DEPARTMENT OF TECHNICAL EDUCATION GOVERNMENT OF TAMILNADU

From

The Principal Secretary / Commissioner, Directorate of Technical Education, Chennai 600 025.

To

The Principals of all the Government, Government Aided and Self Financing Polytechnic Colleges And Teaching Faculty & Stakeholders

give !

Letter No. 22639/Y3/ CDC/2014 dated 12.12.2014

Sir/ Madam,

Sub:- Technical Education – Revised First year Polytechnic College – Diploma In Engineering - M – Scheme - Curriculum and Syllabi – To be implemented from the academic year 2015-2016 - Seeking Views and Remarks – Regarding.

The State Board of Technical Education and Training, TamilNadu is in the process of revising the Curriculum and Syllabi for the First Year Diploma in Engineering / Technology offered through Polytechnic Colleges in accordance with the need and expectations of the industry and other stakeholders. The draft revised Syllabi for the First Year Diploma in Engineering Programmes (except the subject Communication English which is under revision) is uploaded at the DOTE's website (www.tndte.gov.in). The Academicians, Technocrats, Principals & Concern Faculty members of the Polytechnic Colleges, Industrial representatives and others are requested to offer their views and suggestions through the email id (<a href="dotter.dotter

Encl: First year M-scheme Draft syllabus

for Principal Secretary/
Commissioner of Technical Education

DIPLOMA IN ENGINEERING & SPECIAL PROGRAMMES FIRST YEAR

2015-2016

SEMESTER SYSTEM M - SCHEME

SYLLABUS

DIRECTORATE OF TECHNICAL EDUCATION TAMIL NADU

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

M-SCHEME CURRICULUM OUTLINE

FIRST SEMESTER

			WEEK			
S.No.	SUBJECT	Theory Hours	Drawing	Tutorial	Practical hours	Total Hours
30011	Communication English-I	5	-	- (_	5
30012	Engineering Mathematics-I	8	-	-//		8
30013	Engineering Physics-I	5	-	-//	<u></u>	5
30014	Engineering Chemistry-I	5	- (<u> </u>	(//-	5
30015	Engineering Graphics-I	-	5		-	5
30016	Engineering Physics-I Practical	-	^ -	\\\\\ <u>-</u> \\	2	2
30017	Engineering Chemistry-I Practical	-	1	<u> </u>	2	2
30018	Workshop Practice	4		-	3	3
	TOTAL	23	5	-	7	35

SECOND SEMESTER

			HOU	RS PER	WEEK	
S.No.	SUBJECT	Theory Hours	Drawing	Tutorial	Practical hours	Total Hours
30021	Communication English-II	5	-	-	-	5
30022	Engineering Mathematics-II	5	-	1	-	6
30023	Applied Mathematics	5	-	1	-	6
30024	Engineering Physics-II	4	-	-	-	4
30025	Engineering Chemistry-II	4	-	-	-	4
30026	Engineering Graphics-II	-	5	1	-	6
30027	Engineering Physics-II Practical	-	-	-	2	2
30028	Engineering Chemistry-II Practical	-	-	-	2	2
	TOTAL	23	5	3	4	35

Note: The Communication English-I and Communication English-II is under revision not yet finalised.

M-SCHEME SCHEME OF THE EXAMINATION

FIRST SEMESTER

		Exami	ination Mar	ks		of urs
S.No	SUBJECT	Internal assess- ment Marks	Board Exam. Marks	Total Mark	Minimum for pass	Duration Exam Hou
30011	Communication English-I	25	75	100	40	3
30012	Engineering Mathematics-I	25	75	100	40	3
30013	Engineering Physics-I	25	75	100	40	3
30014	Engineering Chemistry-I	25	75	(100)	40	3
30015	Engineering Graphics-I	25	75	100	40	3
30016	Engineering Physics-I Practical	25	75	100	50	3
30017	Engineering Chemistry-I Practical	25 🔷	75	100	50	3
30018	Workshop Practice	25	75	100	50	3
	TOTAL	200	600	800		

SECOND SEMESTER

		Exami	ination Mai	ks	C 40	of urs
S.No.	SUBJECT	Internal assess- ment Marks	Board Exam Marks	Total Mark	Minimum for pass	Duration Exam Hou
30021	Communication English-II	25	75	100	40	3
30022	Engineering Mathematics-II	25	75	100	40	3
30023	Applied Mathematics	25	75	100	40	3
30024	Engineering Physics-II	25	75	100	40	3
30025	Engineering Chemistry-II	25	75	100	40	3
30026	Engineering Graphics-II	25	75	100	40	3
30027	Engineering Physics-II Practical	25	75	100	50	3
30028	Engineering Chemistry-II Practical	25	75	100	50	3
	TOTAL	200	600	800		·

Note: The Communication English-I and Communication English-II is under revision not yet finalised

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING - SYLLABUS M-SCHEME

(Implements from the Academic Year 2015-2016 on wards)

Course Name: All Branches of Diploma in Engineering and Technology and Special Programmes

Except DMOP, HMCT and Film & TV

Subject Code : **30012**Semester : I Semester

Subject Title : ENGINEERING MATHEMATICS - I

TRAINING AND SCHEME OF EXAMINATION:

No. of Weeks per Semester: 15 Weeks

Subject	Instructions				
Engineering	Hours / Week	Hours / Semester		Marks	Duration
Engineering Mathematics - I	8 Hrs.	120 Hrs.	Internal Assessment	Semester Total Examination	- Duration
			25	75 \ 1,00	3 Hrs

TOPICS AND ALLOCATION OF HOURS:

SI.No.	Topics	Time (Hrs.)
1	Algebra - Determinants, Matrices and Binomial Theorem	22
2	Complex Numbers	22
3	Trigonometry	22
4	Inverse Trigonometric Ratios & Differential Calculus - I	22
5	Differential Calculus - W	22
	Test and Tutorial	10
	TOTAL	120

Rationale: This subject being a branch of "Logic" is classified as one of the basic sciences and intends to teach students, basic facts, concepts and principles of mathematics as a tool to analyse Engineering problems. Mathematics lay down foundation for understanding core technology subjects.

Objectives: This subject helps the students to develop logical thinking which is useful in Comprehending the principles of all other subjects. Analytical and systematic approach towards any problem is developed through learning of this subject. Mathematics being a versatile subject can be used at every stage of human life. The student will be able to acquire knowledge of algebra of complex numbers and its uses to solve equations having non-real solutions and knowledge of differentiation, principles and different methods, develop the ability to apply these methods to solve technical problems to execute management plans with precision.

DETAILED SYLLABUS CONTENTS

UNIT	NAME OF TOPICS	Hours
	ALGEBRA	
	Chapter - 1.1 DETERMINANTS	
	Definition and expansion of determinants of order 2 and 3. Properties of	7
	determinants (not for examination). Solution of simultaneous equations using	
	Cramer's rule (in 2 and 3 unknowns) - Simple Problems.	
	Chapter - 1.2 MATRICES Definition –Singular Matrix, Non-singular Matrix, Ad joint of a matrix and	
	Inverse of a matrix up to 3 x 3 only. Simple Problems. Definition – Rank of a	
ı	matrix. Finding rank of a matrix by determinant method (matrix of order 3 x 4) Simple Problems.	
	Chapter - 1.3 BINOMIAL THEOREM Definition of Factorial notation - Definition of Permutation and Combinations	
	– values of nP_r and nC_r (results only) [not for examination]. Binomial	
	theorem for positive integral index (statement only) - Expansion - Finding of	8
	general term, middle term, coefficient of x^n and term independent of x .	
	Simple Problems. Binomial Theorem for rational index up to - 3 (statement	
	only), Expansions only for - 1, - 2 and 3.	
	COMPLEX NUMBERS	
	Chapter - 2.1 ALGEBRA OF COMPLEX NUMBERS	
	Definition – Real and Imaginary parts, Conjugates, Modulus and amplitude	
	form, Polar form of a complex number, multiplication and division of complex	8
	numbers (geometrical proof not needed) – Simple Problems .Argand Diagram	
II	- Collinear points, four points forming square, rectangle, rhombus and	
	parallelogram only . Simple Problems.	
/	Chapter - 2,2 DE MOIVER'S THEOREM Demoivre's Theorem (statement only) – related simple problems.	7
_ \	Chapter 2.3 ROOTS OF COMPLEX NUMBERS	
	Finding the n^{th} roots of unity - solving equation of the form $x^n \pm 1 = 0$	7
	where $n \leq 7$. Simple Problems.	
	TRIGONOMETRY Chapter 3.1 COMPOUND ANGLES	
III	Chapter – 3.1 COMPOUND ANGLES Expansion of $sin(A \pm B)$, $cos(A \pm B)$ and $tan(A \pm B)$ [without proof].	8
	Problems using above expansions.	

UNIT	NAME OF TOPICS	Hours
	Chapter - 3.2 MULTIPLE ANGLES Trigonometrical ratios of multiple angles of 2A and 3A and sub multiple	7
Ш	angles. Simple Problems.	
	Chapter - 3.3 SUM AND PRODUCT FORMULAE	7
	Trigonometrical ratios of sum and product formulae. Simple Problems.	,
	INVERSE TRIGONOMETRIC RATIOS & DIFFERENTIAL CALCULUS – I	
	Chapter - 4.1 INVERSE TRIGONOMETRIC FUNCTIONS Definition of inverse trigonometric ratios – Relation between inverse	
	trigonometric ratios. Simple Problems.	
	Chapter - 4.2 LIMITS	
	Definition of Limits. Problems using the following results:	
IV	(i) $\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$ (ii) $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ and	7
	(iii) $\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1$ (θ - in radians) (results only). Simple Problems.	
	Chapter - 4.3 DIFFERENTIATION Definition – Differentiation of $x^n \sin x \cos x \tan x$, $\cos ec x$, $\sec x$, $\cot x$, $\log x$, e^x , $u \pm v$, uvw	8
	problems using the above results.	
	DIFFERENTIAL CALCULUS – II	
	Chapter – 5.1 DIFFERENTIATION METHODS Differentiation of function functions (chain rule), Inverse Trigonometric	8
	functions and Implicit functions. Simple Problems.	
.,	Chapter - 5.2 SUCCESSIVE DIFFERENTIATION Successive differentiation up to second order (parametric form not included).	
V <	Definition of differential equation, order and degree, formation of differential	7
	equation. Simple Problems.	
	Chapter - 5.3 PARTIAL DIFFERENTIATION	
	Definition – Partial differentiation of two variables up to second order only. Simple Problems.	7

Text Book:

Mathematics for Higher Secondary – I year and II year (Tamil Nadu Text Book Corporation)

Reference Book:
Engineering Mathematics - Dr.M.K.Venkatraman, National Publishing Co, Chennai
Engineering Mathematics - Dr.P.Kandasamy & Others, S.Chand & Co Ltd, New Delhi

Board Examination – Question Paper Pattern

Time: 3 Hrs. Max.Marks: 75

The Question paper will be in the pattern as indicated below:

PART A - 5 Questions to be answered out of 8 for 2 marks each.

PART B - 5 Questions to be answered out of 8 for 3 marks each.

PART C - 10 Questions to be answered out of 15 for 5 marks each.

These Questions is to be numbered from 1 to 31 continuously where in the Question No.17 pertaining to the very first question of PART – C would be compulsory question (can be asked from any one of the units) which would test the analytical ability of the student.

The complete syllabus is covered with equal weightage

PART A	5 x 2 marks	10 Marks
PART B	5 x/3 marks	15 Marks
Short answer type questions	V	
PART C	10 x 5 marks	50 Marks
Descriptive answer type questions		
Total /> //	75 Ma	rks

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name : All branches of Diploma in Engineering and Technology and

Special Programmes except DMOP, HMCT and Film & TV

Subject Code : 30013

Semester : I Semester

Subject Title : ENGINEERING PHYSICS - I

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester. 15 weeks

Subject	Ins	tructions	Examination Marks		Duration	
,	Hours /Week	Hours/Sem.	Internal	Board	Total	
ENGINEERING PHYSICS - I	5 Hrs	75	25	75	100	3Hrs

Topics and Allocation of Hours:

SI.No.	Topic	Time(Hrs)
1.	S I UNITS AND STATICS	13
2.	PROPERTIES OF MATTER	13
3.	DYNAMICS- I	13
4.	DYNAMICS-IA	13
5.	SOUND AND MAGNETISM	13
6.	REVISION + TEST + MODELEXAM	10
	Total	75

RATIONALE:

The exponential growth of Engineering and Technology has benefited the marking with extreme sophistication and comfort. To sustain this development, continuous research and development should take place not only in Engineering and Technology but also in Basic Science such as Physics.

The various divisions of Physics like Optics, Acoustics, Dynamics, Semiconductor Physics, Surface Physics, Nuclear Physics, Energy Studies, Materials Science, etc provide the Foundation by enlightening the Fundamental facts, Principles, Laws and Correct sequence of events to develop the Engineering and Technology field for the prosperity of human beings.

OBJECTIVES:

At the end of the study of I Semester the student will be able to

- Understand the importance of SI units and dimensional formulae.
- Acquire broad ideas about resultant, moment of force and torque of a couple.
- Understand the elastic property and the types of Modulus of elasticity.
- Explain the surface tension of liquids and viscosity of fluids.
- Understand Newton's laws of motion and equations of different types of motion.
- Acquire knowledge about projectile motion, circular motion and its application.
- Understand the concepts of simple harmonic motion
- Gain knowledge about rotational kinetic energy and angular momentum.
- Acquire broader ideas about variation of acceleration with respect to height and its importance in launching satellites.
- Understand the propagation of sound and acoustics of buildings.
- Explain the importance of hysteresis of magnetic materials and its uses.
- Solve simple problems involving expressions derived in all the above topics.

30013 ENGINEERING PHYSICS – I DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
I	S I UNITS AND STATICS	
	1.1 UNITS AND MEASUREMENTS	4Hrs
	Unit-Definition-Fundamental Quantities-Definition-Seven fundamental	
	quantities; their SI units and symbol for the units-Dimensional formula for	
	length, mass and time-Supplementary quantities-plane angle and solid	
	angle; their SI units and symbol for the units Derived physical quantities.	
	Definition-SI units, symbol for the units and derivation of dimensional	
	formula for area, volume, density, velocity, momentum, acceleration,	
	force, impulse, work or energy and power. Uses of Dimensional formula.	
	Conventions followed in SI -Multiples & sub-multiples and prefixes of	
	units.	
	1.2 STATICS	9 Hrs
	Scalar and vector quantities—Definitions and examples—Concurrent	
	forces and coplanar forces Definition-Resolution of a vector into two	
	perpendicular components-Resultant and equilibrant-Definitions-	
	Parallelogram law of forces-statement-Expressions for magnitude and	
	direction of the resultant of two forces acting at a point with an acute	
	angle between them - Lami's theorem-Statement and explanation-	
	Experimental verification of parallelogram law of forces and Lami's	
	theorem. Simple problems based on expressions for magnitude and	
<	direction of resultant.	
	Moment of a force-Clockwise and anti-clockwise moments-Principle of	
	moments-Couple-Torque acting due to a Couple-Experimental	
	determination of mass of the given body using principle of moments.	

Unit	Name of the Topic	Hours
II	PROPERTIES OF MATTER	
	2.1 ELASTICITY	4 Hrs
	Elastic and plastic bodies—Definition-stress, strain-Definitions—Hooke's law-statement-three types of strain—Elastic and plastic limit—Young's modulus, Bulkmodulus, Rigidity modulus and Poisson's ratio—Definitions—Uniform and non-uniform bending of beams-Experimental determination of the Young's modulus of the material of a beam by uniform bending method. Simple problems based on stress, strain and Young's modulus.	
	2.2 VISCOSITY	5 Hrs
	Viscosity–Definition-Coefficient of viscosity-Definition, Slunit and dimensional formula-Stream line flow, turbulent flow-Explanation-Critical velocity–Definition-Reynolds number-Experimental comparison of coefficient of viscosity of two low viscous liquids–Terminal velocity–Definition-Experimental determination of coefficient of viscosity of a high viscous liquid by Stokes' method–Practical applications of viscosity.	
	2.3 SURFACE TENSION	4 Hrs
	Surface tension & angle of contact-Definitions-Expression for surface tension of a liquid by capillary rise method-Experimental determination of surface tension of water by capillary rise method-Practical applications of capillarity. Simple problems based on expression for surface tension.	

Name of the Topic	Hours
DYNAMICS-I	
3.1.STRAIGHTLINE MOTION	2Hrs
Introduction-Newton's Law of motion-Fundamental Equations of motion	
for objects- horizontal motion-falling freely-thrown vertically upwards.	
3.2 PROJECTILE MOTION	4 Hrs
Projectile motion, angle of projection, trajectory, maximum height time of))
flight, and horizontal range-Definitions-Expressions for maximum height,	
time of flight and horizontal range-Condition for getting the maximum	
range of the projectile-Derivation of the equation to show that the	
trajectory of the projectile is a parabola. Simple problems based on	
expressions for maximum height, time of flight and horizontal range.	
3.3 CIRCULAR MOTION	7 Hrs
Circular motion, angular velocity, period and frequency of	
revolutions-Definitions-Relation between linear velocity and	
angular velocity-Relation between angular velocity period and	
frequency-Normal acceleration, centripetal force and centrifugal	
force-Definitions-Expressions for normal acceleration and	
centripetal force. Banking of curved paths-Angle of banking-	
Definition-Expression for the angle of banking of a curved path.	
$\{ \tan\theta = \sqrt{r} \text{ (r g)} \}$ Simple problems based on expressions for	
centripetal force and angle of banking. Simple harmonic motion,	
amplitude, frequency and period-Definitions.	
	3.1.STRAIGHTLINE MOTION Introduction-Newton's Law of motion-Fundamental Equations of motion for objects- horizontal motion-falling freely-thrown vertically upwards. 3.2 PROJECTILE MOTION Projectile motion, angle of projection, trajectory, maximum height, time of flight, and horizontal range—Definitions-Expressions for maximum height, time of flight and horizontal range—Condition for getting the maximum range of the projectile-Derivation of the equation to show that the trajectory of the projectile is a parabola. Simple problems based on expressions for maximum height, time of flight and horizontal range. 3.3 CIRCULAR MOTION Circular motion, angular velocity, period and frequency of revolutions—Definitions—Relation between linear velocity and angular velocity—Relation between angular velocity period and frequency—Normal acceleration, centripetal force and centrifugal force—Definitions—Expressions for normal acceleration and centripetal force Banking of curved paths—Angle of banking—Definition—Expression for the angle of banking of a curved path. { tanθ= velocity and angle of banking. Simple harmonic motion,

Unit	Name of the Topic	Hours
IV	DYNAMICS-II	
	4.1 ROTATIONAL MOTION OF RIGID BODIES	6Hrs
	Rigid body-Definition-Moment of inertia of a particle About an axis, moment of inertia of a rigid body about an axis-expressions-Radius of	
	gyration-Definition- Expression for the kinetic energy of a rotating rigid body about an axis-Angular momentum-Definition-Expression for the	
	angular momentum of a rotating rigid body about an axis-Law of conservation of angular momentum-Examples.	
	4.2 GRAVITATION	3 Hrs
	Newton's laws of gravitation—Acceleration due to gravity on the surface of earth—Expression for variation of acceleration due to gravity with altitude	
	4.3 SATELLITES	4 Hrs
	Satellites-Natural and artificial-Escape velocity and orbital	
	velocity-Definitions-Expression for escape velocity-Expression for	
	orbital velocity –Uses of artificial satellites. Simple problems based	
	on expressions for escape velocity and orbital velocity.	

Unit	Name of the Topic	Hours
V	SOUND AND MAGNETISM	
	5.1 SOUND	8Hrs
	Wave motion-Introduction and definition-Audible range-Infrasonic-	
	Ultrasonic-Progressive waves, longitudinal and transverse waves-	\mathbb{Z}
	Examples Amplitude, wave length, period and frequency of a wave-))
	Definitions-Relation between wavelength, frequency and velocity of a	
	wave-Stationary or standing waves. Vibrations-Free & forced vibrations	
	and resonance-definitions and examples-Laws of transverse vibrations	
	of a stretched string-Sonometer-Experimental determination of	
	frequency of a tuning fork. Acoustics of buildings—Echo-Reverberation,	
	reverberation time, Sabine's formula for reverberation time (no derivation)	
	-Coefficient of absorption of sound energy-Noise pollution. Simple	
	problems based on expression for frequency of vibration.	
	5.2 MAGNETISM	5 Hrs
	Pole strength –Definitions–Magnetic moment, intensity of magnetisation,	
	magnetising field intensity, magnetic induction, permeability, hysteresis,	
	saturation, retentively and coercively-Definitions-Method of drawing	
	hysteresis loop of a specimen using a solenoid-Uses of Hysteresis loop	
	simple problem based on intensity of magnetization.	

Text Book

- 1 Engineering Physics ,DOTE, Tamil Nadu
- 2 Physics Higher secondary First & Second year Volume I & II TamilNadu Text Book Corporation 2004 & 2005

Reference Book

- 1 Physics–Resnick and Haliday–Wisley Toppan publishers– England
- 2 Engineering Physics–B.L.Theraja–S. Chand Publishers
- 3 A text book of sound–R.L. Saighal & H.R. Sarna–S.Chand & Co
- 4 Mechanics–Narayana Kurup–S. Chand Publishers

Board Examination – Question Paper Pattern

Time: 3 Hrs. Max.Marks: 75

The Question paper will be in the pattern as indicated below:

PART A - 5 Questions to be answered out of 8 for 2 marks each.

PART B - 5 Questions to be answered out of 8 for 3 marks each.

PART C - 10 Questions to be answered out of 15 for 5 marks each.

These Questions is to be numbered from 1 to 31 continuously where in the Question No.17 pertaining to the very first question of PART – C would be compulsory question (can be asked from any one of the units) which would test the analytical ability of the student.

The complete syllabus is covered with equal weightage

PART A	5 x 2 marks	10 Marks
PART B	5 x/3 marks	15 Marks
Short answer type questions		
PART C	10 x 5 marks	50 Marks
Descriptive answer type questions		
Total	75 Ma	rks

-000-

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015 - 2016 onwards)

Course Name: All Branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and Film & TV

Subject Code: 30014

Semester : I Semester

Subject Title: **ENGINEERING CHEMISTRY – I**

TEACHING AND SCHEME OF EXAMINATION:

No. of Weeks per Semester: 15 Weeks

				110. Of Trocks po	. 001/100	toi, ilo ttooko
	Ins	tructions		Examination	a //))
	Hours			Marks //		
Subject	/ Week	Hours/ Semester	Internal Assessment	Board Examination	Total	Duration
ENGINEERING CHEMISTRY - I	5	75	25	75	100	3 Hrs

Topics and Allocation of Hours:

SI. No	Topics	Time (Hrs)
1	Atomic Structure, Molecular Mass, Acids and Bases	13 Hours
2	Solution, Colloids, Nano-Particles	13 Hours
3	Technology of Water, Catalysis, Glass	13 Hours
4	Electrochemistry, Electrochemieal Cell, Energy Sources	13 Hours
5	Corrosion, Methods of Prevention of Corrosion, Organic Coatings	13 Hours
6	Revision and Examinations	10 Hours
	Total	75 Hours

RATIONALE:

The subject Engineering Chemistry creates foundation for understanding basic concepts of chemistry and its effects on Engineering Materials. Engineering Chemistry also impart knowledge of properties of materials and protecting them from corrosion and selecting right types of materials used in various fields of Engineering and Industry.

OBJECTIVES:

The objective of this Course is to make the student:

- 1. Study about the importance of Engineering Chemistry in industry.
- 2. Know about atomic structure, molecular mass and acids and bases.
- 3. Learn about solutions, colloidal particles and nano-particles.
- 4. Know about hardness of water, catalysis and glass.
- 5. Explain the details of electrochemistry, electrochemical cell and energy sources.
- 6. Understand corrosion and its preventive methods.

30014 ENGINEERING CHEMISTRY - I

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
ı	ATOMIC STRUCTURE, MOLECULAR MASS, ACIDS AND BASES	
	1.1 Atomic Structure	4 Hrs
	Atom - Definition - Fundamental particles of Atom - their Mass, Charge and	
	Location - Atomic number and Mass number - Definition - Isotopes and	
	Isobars - Definition with suitable examples - Formation of cation and anion by	
	electronic concept of oxidation and reduction - Octet rule - Formation of	
	electrovalent compound (NaCl) — Formation of covalent compound (NH ₃).	
	1.2 Molecular Mass	4 Hrs
	Molecule - Molecular formula - Molecular Mass - Mole - Definition -Simple	
	calculations - Avogadro's Hypothesis - Relationship between Molecular Mass	
	and Vapour Density – Avogadro's Number – Definition.	
	1.3 Acids and Bases	5 Hrs
	Theories of Acids and bases - Arrhenius Theory - Lowry - Bronsted Theory -	
	Lewis theory - Advantages of Lewis theory - pH and pOH -Definition -	
	Numerical problems - Indicator - Definition - Buffer solution - Definition -	
	Types of buffer solution with examples - Application of pH in industries.	

Unit	Name of the Topic	Hours
II	SOLUTION, COLLOIDS, NANO-PARTICLES	
	2.1 Solution	4 Hrs
	Definition – Methods of expressing concentration of a solution – Molarity, Molality, Normality, Mole fraction and Percentage Mass – Simple problems.	
	2.2 Colloids	6 Hrs
	True solution and Colloidal solution – Definition – Differences – Types of colloids – Lyophilic and Lyophobic colloids – Differences – Properties – Tyndall effect, Brownian movement, Electrophoresis and Coagulation – Industrial applications of colloids – Smoke Precipitation by Cottrell's method, Purification of water, Cleansing action of soap, Tanning of leather and Sewage disposal.	
	2.3 Nano-Particles	3 Hrs
	Definition – Importance of Nano-particles Area of application – Medicine, Electronics and Biomaterials.	

Unit	Name of the Topic	Hours
III	TECHNOLOGY OF WATER, CATALYSIS, GLASS	
	3.1 Technology of Water	6 Hrs
	Sources of water – Reasons for depletion of underground water – Rain water harvesting (Basic ideas) – Advantages – Hard water and soft water – Hardness of water – Carbonate and Non–carbonate hardness – Methods of expressing hardness – mg/lit and ppm – Simple problems – Estimation of total hardness of water by EDTA method – Problems involving Total, Carbonate and Non–carbonate hardness in ppm – Softening of hard water – Ion-Exchange method and Reverse Osmosis method – Municipal water supply – Purification (Sedimentation, Filtration and Sterilization) – Disadvantages of using hard water in boilers – Scale formation, Corrosion of boiler metal, Caustic Embrittlement and Priming and Foaming.	
	3.2 Catalysis	4 Hrs
	Catalyst – Positive catalyst – Negative catalyst – Definition – Types of catalysis – Homogeneous and Heterogeneous – Promoter – Catalyst poison – Definition – Characteristics of a catalyst – Industrial applications of catalysts.	
	3.3 Glass	3 Hrs
	Definition – Manufacture of glass – Varieties of Glass – Optical glass, Windshield glass and Photo chromatic glass.	

Unit	Name of the Topic	Hours
IV	ELECTROCHEMISTRY, ELECTROCHEMICAL CELL, ENERGY SOURCES	
	4.1 Electrochemistry	5 Hrs
	Electrolyte - Definition - Strong and Weak electrolytes - Examples - Electrolysis - Definition - Mechanism - Industrial application of Electrolysis - Electroplating - Preparation of surface - Process - Factors affecting the stability of the coating - Chrome plating - Electroless plating - Definition -	0
	Advantages of Electroless plating over electroplating – Applications of Electroless plating.	
	4.2 Electrochemical Cell	4 Hrs
	Electrochemical Cell – Definition – Representation of a Cell – Single Electrode	
	Potential – Definition – Galvanic Cell – Formation of Daniel Cell –	
	Electrochemical Series – Definition and Significance – Electrolytic	
	Concentration Cell – Definition and Formation.	
	4.3 Energy Sources	
	Primary Battery - Definition and example - Construction, Working and Uses of	4 Hrs
	Dry cell - Secondary Battery - Definition and example -Construction, Working	
	and Uses of Lead-acid Storage Cell – Non-conventional Energy Sources	
	- Solar Cell - Definition -Principle, Construction, Working and Uses.	

Unit	Name of the Topic	Hours
v	CORROSION, METHODS OF PREVENTION OF CORROSION, ORGANIC COATINGS	
	5.1 Corrosion	4 Hrs
	Definition – Types of Corrosion – Theories of corrosion – Galvanic Cell Formation Theory – Differential Aeration theory – Factors influencing the rate of corrosion.	
	5.2 Methods of Prevention of Corrosion	4 Hrs
	Control of Environment – Alloying – Surface coatings – Metal coatings – Electroplating, Galvanization and Tinning – Inorganic coating – Anodizing – Cathodic Protection – Sacrificial Anode Method and Impressed Voltage Method.	
	5.3 Organic Coatings	5 Hrs
	Paint - Definition - Components of Paints and their functions - Varnish -	
	Definition - Preparation of Oil Varnish - Differences between Paint and	
	Varnish - Special Paints - Luminescent Paints, Fire retardant Paints,	
	Aluminium Paints and Distemper.	

Text Book

- 1) Engineering Chemistry Jain & Jain Dhanpat Rai & Sons.
- A Text Book of Engineering Chemistry S.S. Dara S. Chand Publication.

Reference Book:

- 1) A Text Book of Environmental Chemistry and Pollution Control S.S. Dara S. Chand Publication.
- 2) Engineering Chemistry Uppal Khanna Publishers.
- 3) Chemistry Higher Secondary Second Year Volume I&II Tamil Nadu Text Book Corporation 2014.
- 4) Environmental Chemistry V P Kudesia Pragati Publishers.

Board Examination – Question Paper Pattern

Time: 3 Hrs. Max.Marks: 75

The Question paper will be in the pattern as indicated below:

PART A - 5 Questions to be answered out of 8 for 2 marks each.

PART B - 5 Questions to be answered out of 8 for 3 marks each.

PART C - 10 Questions to be answered out of 15 for 5 marks each.

These Questions is to be numbered from 1 to 31 continuously where in the Question No.17 pertaining to the very first question of PART – C would be compulsory question (can be asked from any one of the units) which would test the analytical ability of the student.

The complete syllabus is covered with equal weightage

PART A	5 x 2 marks	10 Marks	
PART B	5 x 3 marks	15 Marks	
Short answer type questions	<u> </u>		
PART C	10 x 5 marks	50 Marks	
Descriptive answer type questions			
Total	75 Marks		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name :All branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and film & TV.

Subject Code : 30015

Semester : I Semester

Subject Title : ENGINEERING GRAPHICS – I

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 15 weeks

Subject	Inst	ructions	4	Examination		
	Hours /	Hours /		Marks		
	Week	Semester		Warks		
ENGINEERING			Internal	Board	Total	Duration
GRAPHICS - I	E	75	Assessment	Examination	Total	
)	75	25	// 75	100	3 Hrs.

Topics and Allocation of Hours

SI.No.	Topics	Hours.
1	Drawing office practice, Lettering and Dimensions.	18 Hrs.
2	Geometric Constructions and Constructions of conics curves.	20 Hrs.
3	Projection of points and straight lines.	17 Hrs
4	Orthographic projections.	20Hrs.
	Total	75 Hrs.

RATIONALE:

Engineering graphics is a basic subject for all branches of Diploma Engineering and Technology. Since engineering drawing is considered as the language of engineers, the proper understanding and practice is required with proper instruments.

This subject is aimed at providing basic understanding of the fundamentals of Engineering Drawing; mainly visualization, graphics theory, standards & conventions of drawing, the tools of drawing and the use of Drawings in engineering applications.

The topics covered are based on the syllabus for Diploma studies in engineering. The subject is planned to include sufficient practices which would help the student in visualization of three dimensional objects and developing the drawing.

The chapters are arranged in sequence and starts from the basic concepts of geometrical constructions & engineering curves, proceeds to the principles of projection techniques. By the end of the subject it is expected that the students would be matured to visualize any engineering component by reading an engineering drawing.

OBJECTIVES:

At the end of the practice, the students will be able to,

- Understand the importance of drawing.
- Identify and use the drawing instruments.
- Practice the rules and methods of dimensioning.
- Acquire knowledge about geometric construction.
- Construct conics curves.
- Draw the projection of points and straight lines.
- Draw orthographic views from isometric drawings.

30015 ENGINEERING GRAPHICS – I DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
ı	1. 1. Drawing office practice	18
	Importance of engineering drawing - drawing instruments: drawing board,	
	mini drafter, compass, divider, protractor, drawing sheets, drawing pencils, set	
	squares etc.,-title block – folding of drawing sheets.	\triangleright
	Importance of legible lettering and numbering - single stroke letters - upper case	
	and lower case letters- general procedures for lettering and numbering - height of	
	letters – guidelines- practices.	
	Scales - full scale, reduced scale and enlarged scale.	
	1. 2. Dimensioning	
	Dimensioning - terms and notations as per BIS -requirement of dimensioning -	
	Dimension line, Extension lines and Leader lines - Dimensioning systems -	
	Methods of dimensioning – Important dimensioning rules – Exercises (One view	
	of the object).	
П	2.1 Geometric Constructions	20
	Geometric constructions: Bisect a line - bisect an arc - bisect given angle -	
	divide straight line into number of equal parts - divide the circle into number of	
	equal divisions - draw an arc touching two lines at any angle - draw an arc	
	touching two arcs.	
	2.2 Constructions of conics	
	Conics: Cone - conic sections - Definition of locus, focus, directrix, axis, vertex	
	and eccentricity. Definition: ellipse, parapola and hyperbola.	
	Ellipse: Construction of ellipse by concentric circle method, rectangular method	
	and Eccentricity method when focus and directrix are given - Exercises in	
	practical applications.	
	Parabola: Construction of parabola by rectangular method, parallelogram method	
	and eccentricity method when focus and directrix are given- exercises in practical	
	applications.	
	Hyperbola: Construction of hyperbola by rectangular method and eccentricity	
	method when focus and directrix are given- exercises in practical applications.	
III <	3.1 Projection of points.	17
	Projection of points - points on the different quadrants and on the reference	
	planes.	
	3.2 Projection of straight lines.	
	Projection of straight lines – Lineion the first quadrant and on the reference	
	planes - perpendicular to one plane and parallel to other plane - inclined to one	
V	plane and parallel to the other plane – parallel to both the planes – inclined to	
	both the planes – Exercises.	
IV	4.1. Orthographic projection	20
	Introduction – Orthographic projection - terms - First angle projection - Third angle	
	projection – Draw symbols – Compare first and third angle projections.	
	Draw the projection of the simple isometric objects using first angle projection	
	only – Draw front view, top view and right/left side view.(Any two views only)	

Text Books

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2. Gill P.S., "Engineering drawing", S.K.Kataria & Sons.

Reference Books

- 1. Gopalakrishnan.K.R., "Engineering Drawing", (Vol.I and Vol.II), Dhanalakshmi publishers, Edition 2, 1970
- 2. Venugopal.K, Sreekanjana G, "Engineering Graphics" New Age International Publishers.
- 3. K V Nataraajan "A Text Book of Engineering Drawing"
- 4. Besant Agrawal, C M Agrawal "Engineering drawing", Tata McGraw Hill Education Private Limited.
- 5. Barkinson & Sinha, "First Year Engineering Drawing", Ritman Publishers.

Board Examination – Question pattern

Time: 3 Hrs. Max.Marks: 75

[Note: Answer all the questions in the drawing sheet.]

Part A

Eight questions will be asked. (1 to 8). Two questions in each unit.

Answer any five questions. Each question carries five marks.

5X5 = 25

Drawings only - Basic construction - simple view and projections

Part B

Eight questions will be asked. (9 to 16). Two questions in each unit.

Answer any five questions. Each question carries ten marks.

Drawings only

TOTAL

75

25

-50

Internal Marks

Assignment drawings

Test

Attendance

10

10 5

Total // - 25

-000-

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name : All branches of Diploma in Engineering and Technology and

Special Programmes except DMOP, HMCT and Film & T

Subject Code : 30016

Semester : I Semester

Subject Title : ENGINEERING PHYSICS – I PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 15 weeks

Subject	Instructions		Examination Marks		Duration	
	Hours /Week	Hours/Sem.	Internal	Board	Total	
ENGINEERING PHYSICS – I PRACTICAL	2 Hrs	30	25	75	100	3Hrs

RATIONALE:

In Diploma level engineering education skill development plays a vital role. The skill development can be achieved by on hand experience in handling various instruments, apparatus and equipment. This is accomplished by doing engineering related experiments in practical classes in various laboratories.

GUIDELINES:

All the Eight experiments given in the list of experiments should be Completed and given for the end semester practical examination.

- In order to develop best skills in handling Instruments/Equipment and taking readings in the practical classes, every two students should be provided with a separate experimental setup for doing experiments in the laboratory.
- The external examiners are requested to ensure that a single experimental question should not be given to more than four students while admitting a batch of 30 students during Board Examinations.

ALLOCATION OF MARKS

Formula, Explanation & Diagram

15 marks

Tabulation with proper units

10 marks

Observation (including taking readings)

35 marks

Calculation

10 marks

Result

05 marks

Total 75 Marks

FIRST SEMESTER 30016- ENGINEERING PHYSICS – I PRACTICAL

All these Experiments is to be practiced and in the board practical examination all these exercises will be considered.

LIST OF EXPERIMENTS WITH OBJECTIVES:

1. MICROMETER (SCREW GAUGE).

To measure the thickness of the given irregular glass plate using micrometer. To determine the area of the glass plate using a graph sheet and to calculate the volume of the glass plate.

2. VERNIER CALIPERS.

To measure the length and diameter of the given solid cylinder using vernier calipers and to calculate the volume of the solid cylinder.

3. CONCURRENT FORCES.

To verify the parallelogram law of forces and Lami's theorem.

4. COMPARISON OF VISCOSITIES

To compare the co-efficient of viscosities of two low viscous Liquids by capillary flow method

5. STOKES' METHOD.

To determine the coefficient of viscosity of a high viscous liquid.

6. SURFACE TENSION.

To determine the surface tension of water by capillary rise method.

7. SONOMETER.

To determine the frequency of the given tuning fork.

8. DEFLECTION MAGNETOMETER

To compare the magnetic moments of the two bar magnets using deflection Magnetometer in Tan A position, by equal distance method .

FIRST SEMESTER ENGINEERING PHYSICS – I PRACTICAL

LIST OF EQUIPMENT

1. MICROMETER (SCREW GAUGE).

Screw gauge, graph sheet and irregular glass plate.

2. VERNIER CALIPERS.

Vernier Calipers and Solid Cylinder

3. CONCURRENT FORCES.

Vertical drawing board, two Z pulleys, three sets of slotted weights (5 x 50g) and twine thread.

4. COMPARISON OF VISCOSITIES

Burette stand, graduated burette without stopper, rubber tube, Capillary Tube, beaker, digital stop watch, two liquids and funnel.

5. STOKES' METHOD.

Stokes' Apparatus, high viscous liquid (Castrol oil), glass beads of Different radii, digital stop watch and screw gauge.

6. SURFACE TENSIONS

Beaker with water, capillary tube, iron stand with clamp, pointer, Travelling microscope and hydro static bench.

7. SONOMETER.

Sonometer, screw gauge, tuning fork, rubber hammer, slotted weight hanger set (5 x 0.5kg) and paper rider. scale and two bar magnets.

8. DEFLECTION MAGNETOMETER

Deflection Magnetometer, meter scale and two bar magnets

FIRST SEMESTER ENGINEERING PHYSICS – I PRACTICAL

MODEL QUESTION PAPER

- 1. Measure the thickness of the given irregular glass plate using micrometer. Determine the area of the glass plate using a graph sheet and calculate the volume of the glass plate.
- 2. Measure the length and diameter of the given solid cylinder. Using Vernier calipers and then calculates the volume of the solid cylinder.
- 3. Verify the parallelogram law of forces and Lami's theorem using concurrent forces.
- 4. Compare the coefficient of viscosity of two Liquids by capillary flow method, using graduated burette.
- 5. Determine the coefficient of viscosity of a high viscous/liquid by Stokes' method.
- 6. Determine the surface tension of water by capillary rise method.
- 7. Determine the frequency of the given tuning fork using sonometer.
- 8. Compare the magnetic moments of the two bar magnets using deflection magnetometer in Tan-A position, by equal distance method

The college authority should ensure the safety to all the students during the workshop and the lab practical.

-000-

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015 - 2016 onwards)

Course Name: All Branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and Film & TV

Subject Code: 30017

Semester : I Semester

Subject Title: ENGINEERING CHEMISTRY – I PRACTICAL

SCHEME OF INSTRUCTIONS AND EXAMINATION:

No. of Weeks per Semester: 15 Weeks

Instructions		Examination			
			Marks		
Subject	Hours/ Week	Hours/ Semester	Internal Assessment/ Record Board Examination	Total	Duration
ENGINEERING CHEMISTRY – I PRACTICAL	2	30	25 75	100	3 Hours

OBJECTIVES:

- 1. At the end of the program the student will have knowledge about volumetric analysis in acidimetric, alkalimetric, permanganometric and iodometric titration and their applications.
- 2. To get knowledge of estimation of total hardness, temporary and permanent hardness in the hard water sample.
- 3. To get knowledge about measurement of pH and to calculate Hydrogen ion concentration in a solution.

ENGINEERING CHEMISTRY – I PRACTICAL

CONTENTS

Intellectual Skills

- 1. Carrying out Volumetric titrations and calculation of masses
- 2. Knowing units for Concentrations of solutions

Motor Skills

- 1./Measure quantities accurately
- Observe chemical reactions
- 3. Handle the apparatus carefully

Acidimetry and Alkalimetry

- Estimation of weak base (sodium carbonate) using a standard solution of sodium hydroxide and sulphuric acid as link solution –Methyl orange indicator [Test solution should be made up to 100 ml]
- 2. Estimation of strong base (sodium hydroxide) using a standard solution of sodium carbonate and sulphuric acid as link solution Methyl orange indicator [Test solution should be made up to 100 ml]
- 3. Comparison of strengths of two acid solutions using a standard solution of sodium hydroxide Phenolphthalein indicator
- 4. Comparison of strengths of two alkaline solutions using a standard solution of oxalic acid Phenolphthalein indicator

Permanganometry

- 5. Estimation of Mohr's salt using a standard solution of ferrous sulphate and potassium permanganate as link solution
 [Test solution should be made up to 100 ml]
- 6. Estimation of Iron in ferrous alloy solution using a standard solution of ferrous ammonium sulphate and potassium permanganate as link solution [Test solution should be made up to 100 m]

lodometry

7. Estimation of copper in brass allow solution using a standard solution of potassium dichromate and sodium thiosulphate as link solution [Test solution should be made up to 100 ml]

Water Analysis

- 8. Estimation of total hardness of a water sample using EDTA
- 9. Determination of pH using a pH meter and calculation of hydrogen ion concentrations in the solutions (For five given samples) (This question may be given to any two students per batch)

INTERNAL ASSESSMENT/RECORD : 25 MARKS
BOARD EXAMINATION : 75 MARKS

VOLUMETRIC ANALYSIS:

MARKS ALLOTED
05
05
25
25
15
75

DETERMINATION OF pH:

FOR	MARKS ALLOTED
ANSWER FOR SHORT QUESTIONS ON pH	05/
VIVA – VOCE	05
DETERMINATION OF pH	40
CALCULATION OF [H ⁺]	2,5
TOTAL	75

MODEL QUESTION PARER

MODEL 1: 3 Hours

Estimate the mass of Iron in whole of the given ferrous alloy solution using a standard solution of ferrous ammonium sulphate of strength 0.0972N and an approximately decinormal solution of potassium permanganate.

MODEL 2: 3 Hours

Calculate the total hardness of the given sample of water using a standard hard water solution of molarity 0.01M and an approximately decimolar solution of EDTA.

MODEL 3: 3 Hours

Determine the pH of five given samples using pH meter and calculate the hydrogen ion concentration of the samples. (Any two students per batch).

SCHEME OF EVALUATION

VOLUMETRIC ANALYSIS:

FOR	MARKS ALLOTED
SHORT PROCEDURE	05
VIVA – VOCE	05
TITRATION – I	25
TITRATION – II	25
CALCULATIONS (3 x 5)	
(Titration - I, Titration - II & Calculations)	15
(For Arithmetic errors 25% Marks may be reduced)	
TOTAL	75 ((

Titration value accuracy for Titration – I and II:

Accuracy	MARKS
± 0.2 ml	25
above ± 0.2 ml to ± 0.4 ml	21
above ± 0.4 ml to ± 0.6 ml	17
above ± 0.6 ml	5

DETERMINATION OF pH:

FOR	MARKS ALLOTED
ANSWER FOR SHORT QUESTIONS ON pH	05
VIVA – VOCE	05
DETERMINATION OF pH (5 SAMPLES) (5 x 8)	40
CALCULATION OF [H ⁺] (5 x 5)	25
TOTAL	75

pH value Accuracy:

Accuracy	MARKS
★ 0.2	8
abøye ± 0,2 to ± 0.4	6
above ± 0.4	4

List of Apparatus to be provided for each student in Chemistry Laboratory during the Engineering Chemistry – I Practical Classes/Board Examination in addition to the required Solutions:

SI.No.	Name of the Item	Quantity (Nos.)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Beaker (100 ml)	1
2	Burette (50 ml)	1
3	Burette Stand	1
4	Conical Flask (250 ml)	1
5	Funnel	1
6	Pipette (20 ml)	1
7	Porcelain Tile	1
8	Standard Flask (100 ml)	1
9	Wash Bottle	1

FIRST YEAR ENGINEERING CHEMISTRY LABORATORY

LIST OF EQUIPMENTS

LIST OF EQUIPMENTS REQUIRED FOR A BATCH OF 30 STUDENTS

NON-CONSUMBALE ITEMS

SI.No.	Name of the Item	Quantity (Nos.)
1	LPG Connection	
2	Exhaust Fan (High Capacity)	Sufficient Nos.
3	Fire Extinguisher	1
4	First Aid Box (Full Set)	2
5	Safety Chart	1
6	Chemical Balance	1 (\
7	Fractional Weight Box	1
8	pH Meter	5
9	Working Table with all accessories	8

GLASSWARE AND OTHER ITEMS

Sl.No.	Name of the Item $ ext{ } ext$	Quantity (Nos.)
1	Burette (50 ml)	35
2	Burette Stand	35
3	Pipette (20 ml) (With safety (Bull))	35
4	Pipette (10 ml)	5
5	Conical Flask (250 ml)	35
6	Funnel (3")	50
7	Porcelain Tile	35
8	Measuring Cylinder (10 ml)	5
9	Measuring Cylinder (1000/ml)	2
10	Reagent Bottle (White) (250 ml)	60
11	Reagent Bottle (White) (125 ml)	100
12	Reagent Bottle (Amber) (250 ml)	80
13	Test Tube (15 mm x 1.5 mm)	1000
14	Test Tube (15 mm x 2.5 mm)	500
15	Test Tube Stand	35
16\	Test Tube Holder	35
17\	Test Tube cleaning brush	35
1) 8 (Glass Trough	5
49	Beaker (100 ml)`	35
20	Glass Rod (15 cm)	100
21	Watch Glass (3")	35
× 22	Wash Bottle (Polythene)	35
23	Nickel Spatula	35
24	Bunsen Burner for Gas connection	35
25	Plastic Bucket (15 L)	10
26	Filter Papers (Round)	Sufficient Nos.
27	Standard Flask (100 ml)	35
	<u> </u>	

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name :All branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and film & TV.

Subject Code : 30018

Semester : I Semester

Subject Title : WORKSHOP PRACTICE

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 15 weeks

Subject	Inst	ructions		Examination	h//	
	Hours /	Hours /		Marks		
	Week	Semester	/	Warks //		
WORKSHOP			Internal	Board	Total	Duration
PRACTICE	3	45	Assessment	Examination	Total	
			25	1 5	100	3 Hrs.

RATIONALE:

Workshop practice is a basic subject for all branches of Diploma Engineering and Technology. This subject is aimed at providing basic understanding of the fundamentals of practical sections; mainly planning, marking, cutting, filing, wiring connections, standards & conventions of wiring, the tools, the use of measuring instruments in engineering applications and plumbing tools and practices.

The topics covered are based on the syllabus for Diploma studies in engineering. The subject is planned to include sufficient practices which would help the student to understand the principles of manufacturing.

OBJECTIVES:

At the end of the practice, the students will be able to,

- Acquire skills in basic engineering practice.
- Identify the hand tools and instruments.
- Study and use measuring instruments.
- Practical skills in the fitting, plumbing and wiring trades.

FITTING SECTION 15 HRS.

- General safety precaution inside the workshop.
- Study about first aid.
- Study of hand tools
- Study of instruments- Calipers -Scale Vernier caliper Vernier height gauge.
- Marking and punching practice.
- Hacksaw cutting practice.
- Filing and fitting practice.
- Drilling and tapping practice.

Exercises

- 1. Single piece cutting and filing
- 2. L-Joint
- 3. V-Joint
- 4. Drilling and tapping (Four drills and Two with Taps)

Raw material: 3mm thick M.S. flat

Note: Practices should be given to cover the above area. At the end, the students should be able to do the above exercises for the board practical examinations. Students should mention the variations in the dimensions of their exercises.

WIRING 15 HRS

- Study about the safety in wiring.
- · Study of tools.
- Study about the earthing.
- Identify different electrical fitting and accessories.
- Identify the types of wires with colour code.
- Identify the symbols in circuit diagram.
- Practice simple wiring.
- Uses of multimeter.

Exercises

- 1. One lamp controlled by one-way switch measure and check the voltage and current using multimeter.
- 2. Two lamps connected in series measure and check the voltage and current using multimeter.
- 3. Two lamps connected in parallel measure and check the voltage and current using multimeter.
- 4. Staircase wiring.

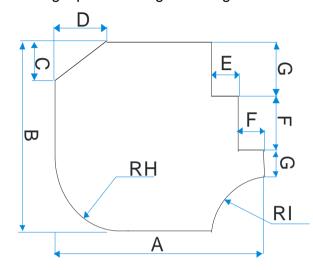
Note: Students should draw the circuit diagram and collect the components according to their requirement. Only components should be given to the students. The connection should be given the main switch. Suitable safety precautions should be made before providing the power connections.

PLUMBING 15 HRS

 Plumbing is the skilled trade of working with pipes, tubing and plumbing fixtures for drinking water systems and the drainage of waste.

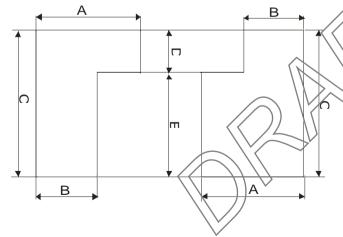
- The plumbing industry is a basic and substantial part of every developed economy due to the need for clean water, and proper collection and transport of wastes.
- Plumbing also refers to a system of pipes and fixtures installed in a building for the distribution of potable water and the removal of waterborne wastes.
- Plumbing is usually distinguished from water and sewage systems, in that a
 plumbing system serves one building, while water and sewage systems serve a
 group of buildings or a city.
- To install pipes and fixtures.
- To repair or replace all kinds of leaks.

Exercises


- 1. Install a sink/washbasin and tap using different PVC pipe accessories such as bend, tee, socket and valve.
- 2. Cutting, bending and external threading of GI pipes using Die.
- 3. Repair a leaking water tap and fix water meter.
- 4. Lay GI pipes to install rain water harvesting.

The students should be given training in all the sections. All the exercises should be completed. The students should maintain record notebook for the concerned trades and submit during the Board Practical Examinations.

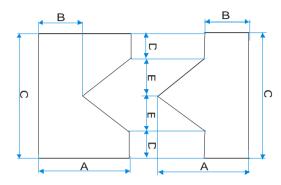
DRAFT SYLLABUS WORKSHOP PRACTICE Page 4 of 10


FITTING EXERCISE

1. Single piece cutting and filing

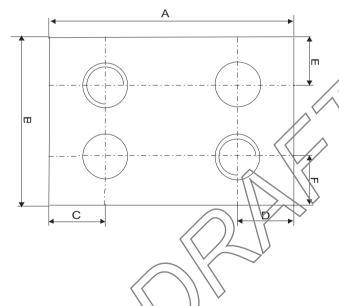
SI.No	PART NAME	ACTUAL	OBTAINED	VARIATION
1	А	<		
2	В	\(\lambda\)		
3	С			
4	D			
5	E			
6	F			
7	G			
8	RH			
9 ((RI			

2. L-Joint



SINO	PART NAME	ACTUAL	OBTAINED	VARIATION
1	Α			
2	В			
3	С			
4	D			
5	E			

DRAFT SYLLABUS WORKSHOP PRACTICE


Page 5 of 10

			$\langle \setminus \smile \rangle \rangle$
SI.No	PART NAME	ACTUAL	OBTAINED VARIATION
			$A \rightarrow A \rightarrow$
1	Α		
2	D		
2	Б		
3	C		7))
)		
4	D		Y /
-)		<u> </u>
5	ĒΛ		
	_	\\	

4. Drilling and tapping (Four drills and Two with Taps)

	\rightarrow			
SI.No	PART NAME	ACTUAL	OBTAINED	VARIATION
1)) A			
2	В			
3	С			
4	D			
5	E			
6	F			
7	Dia			

DRAFT SYLLABUS WORKSHOP PRACTICE

BOARD EXAMINATION

<u>Note:</u> All the exercises in all sections should be given for the question paper and students are allowed to select by a lot. Any two exercises should be carried out for examination by selecting one exercise form one section.

	Durati	ion	ľ	Max. Marks	
Fitting	1 ½ F	ŀrs		35	1
				^	\mathbb{N}
Marking 8	& Cutting	- 10			
Filing / Di	imensions	- 20			
Joint / Fir	nish	- 5	\wedge		
Wiring	1 ½ F	Hrs		35	
)	
Circuit dia	agram	- 10			
Connection	on / Checking	- 20			
Result		- 5	\		
			>		
Plumbing	1 ½ F	frs))		35	
	on of material	- 10			
\ \	on/Testing	- 20			
Result		- 5			
	> <u>/</u> /				
Viva-voce				5	
TOTAL				75	
Internal Marks				25	
Observation		-	10		
Record		-	10		
Attendance		-	5		
	Total	-	25		

LIST OF EQUIPMENTS REQUIRED

NAME OF THE BRANCH / COURSE FIRST YEAR BASIC ENGINEERING

SEMESTER I SEMESTER

NAME OF THE LABORATORY WORKSHOP PRACTICE – FITTING SECTION

S.No LIST OF THE EQUIPMENTS	QUANTITY REQUIRED
1. Power Hacksaw / bar cut machine	1 No.
2. Hand shearing machine	1 No.
3. Surface plate	5 Nos.
4. Anvil	5 Nos.
5. Drilling machine	3 Nos
6. Calipers (Inside / odd leg / outside)	10 Nos each
7. Vernier caliper	√5 Nos √
8. Vernier Height Gauge	2 Nos. I
9. Bench vice fitted on the table	30 Nos.
10. Hand hacksaw Frame	30 Nos.
11. Flat rough / smooth file	30 Nos. each
12. Try angular file	30 Nos.
13. Half round file	30 Nos.
14. Try square	30 Nos.
15. Steel rule	30 Nos.
16. Scriber	30 Nos.
17. Square file	10 Nos.
18. Round file	10 Nos.
19. Dot punch / Center punch / Prick punch	Sufficient quantity
20. Hammer	Sufficient quantity
21. Drill Bit (Required size)	Sufficient quantity
22. Tap set (Required size)	Sufficient quantity
23. Tap wrench	Sufficient quantity

NAME OF THE BRANCH / COURSE SEMESTER NAME OF THE LABORATORY

FIRST YEAR BASIC ENGINEERING
I SEMESTER
WORKSHOP PRACTICE – WIRING SECTION

S.No LIST OF THE EQUIPMENTS

1. Cutting pliers (insulated)

- 2. Wire Cutter
- 3. Screw driver (Insulated)
- 4. 250V Line Tester
- 5. Wiring board (Wood)
- 6. Screw driver set
- 7. Hammer
- 8. Poker
- 9. Multi meter
- 10. Wires
- 11. Bulbs (CFL/LED)
- 12. Tube light set
- 13. Holders
- 14. Connectors
- 15. Switches (One way / Two way)

QUANTITY REQUIRED

- 15 Nos.
- 10 Nos.
- 15 Nos.
- 15 Nos.
- 15 Nos.
- 5 Nos.
- 5 Nos
- 5 Nos.
- 5 Nos.
- Sufficient quantity

NAME OF THE BRANCH / COURSE

SEMESTER

NAME OF THE LABORATORY

FIRST YEAR BASIC ENGINEERING

I SEMESTER

WORKSHOP PRACTICE - PLUMBING SECTION

S.No LIST OF THE EQUIPMENTS **QUANTITY REQUIRED** 1. HAND-OPERATED BENDING TOOL 2 Nos. 2. SPIRIT LEVEL 5 Nos. 3. TRY SQUARE 5 Nos. 4. MEASURING TAPE 5 Nos. 5. HAND DRILLING MACHINE 2 Nos. 6. HACKSAW FRAME WITH BLADE 5 Nos. 7. JUNIOR HACKSAW FRAME 5 Nos. 8. PIPE/TUBE CUTTER 2 Nos. 9. WATER METER 5 Nos. 10. CUTTING PLIER Mos. 11. GRIP PLIER 5 Nos 5/Nos 12. SLIP JOINT PLIER 13. SCREW DRIVER 5 Nos 14. D/E SPANNER (6 to 32 mm) 2 Sets 15. BOX SPANNER (6 to 32 mm) 2 Sets 16. JUMPER BIT 5 Nos 17. FLAT CHISEL 5 Nos 18. SLEDGE HAMMER 5 Nos 19. PIPE VICE 2 Nos 20. PIPE DIE SETS (Various sizes) 5 Nos 21. PIPE WRENCH 5 Nos 22. SHIFTING SPANNER 5 Nos 23. WIRE BRUSH 5 Nos 24. TEFFLON TAPE / SOLUTION Sufficient quantity 25. EMERY SHEET (Various sizes) Sufficient quantity 26. GI Pipes & Accessories Sufficient quantity 27. PVC pipes & Accessories Sufficient quantity 28. OTHER CONSUMABLES Sufficient quantity

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING - SYLLABUS M-SCHEME

(Implements from the Academic Year 2015-2016 on wards)

Course Name: All Branches of Diploma in Engineering and Technology and Special Programmes

Except DMOP, HMCT and Film & TV

Subject Code: 30022

Semester : II Semester

Subject Title : ENGINEERING MATHEMATICS - II

TRAINING AND SCHEME OF EXAMINATION:

No. of Weeks per Semester: 15 Weeks

Subject	Inst	ructions		Examir	nation //	
Engineering	Hours / Week	Hours / Semester		Marks		Duration
Engineering Mathematics - II	5 Hrs.	75 Hrs.	Internal Assessment	Semester Examination	Total	Duration
			25 🔨	75/	100	3 Hrs

TOPICS AND ALLOCATION OF HOURS:

SI.No.	Tepics	Time (Hrs.)
1	Analytical Geometry	14
2	Vector Algebra – I	14
3	Vector Algebra – II	14
4	Integral Calculus - I	14
5	Integral Calculus - II	14
	Test and Tutorial	5
	TOTAL	75

Rationale. In many fields of Engineering There are situations where in the effects due to various factors can be calculated only in a smaller region. To calculate the total effect or effect over a larger region the integration concept is used. Integration plays vital role in many fields of Engineering.

Objectives: The student will be able to acquire knowledge of algebra of vectors and vectors and its application in finding work done, moment, volumes and to acquire knowledge of Integration principles and different methods of Integration.

DETAILED SYLLABUS CONTENTS

UNIT	NAME OF TOPICS	Hours	
	ANALYTICAL GEOMETRY		
	Chapter - 1.1 EQUATION OF CIRCLE Equation of circle – given centre and radius. General equation of circle – finding centre and radius. Equation of circle on the line joining the points (x_1, y_1) and (x_2, y_2) as diameter. Simple Problems. Chapter - 1.2 FAMILY OF CIRCLES Concentric circles, Contact of two circles (Internal and External) - Simple problems. Orthogonal circles (results only). Problems verifying the condition .	5	
I	Chapter - 1.3 INTRODUCTION TO CONIC SECTION Definition of a Conic, Focus, Directrix and Eccentricity. General equation of a conic $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ (statement only). Condition for conic (i) for circle: $a = b$ and $b = 0$ (ii) for pair of straight line: $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$ (iii) for parabola: $b^2 - ab = 0$ (iv) for ellipse: $b^2 - ab < 0$ and (v) for hyperbola: $b^2 - ab > 0$. Simple Problems.	5	
II	Chapter - 2.1 VECTOR - INTRODUCTION Definition of vector - types, addition, and subtraction of Vectors, Properties of addition and subtraction. Position vector. Resolution of vector in two and three dimensions. Directions cosines, Direction ratios. Simple problems. Chapter - 2.2 SCALAR PRODUCT OF VECTORS Definition of Scalar product of two vectors – Properties – Angle between two vectors. Simple Problems.	5	
	Chapter - 2.3 APPLICATION OF SCALAR PRODUCT Geometrical meaning of scalar product. Work done by Force. Simple Problems.	4	
	VECTOR ALGEBRA – II		
III	Chapter - 3.1 VECTOR PRODUCT OF TWO VECTORS Definition of vector product of two vectors. Geometrical meaning. Properties – Angle between two vectors – unit vector perpendicular to two vectors. Simple Problems.	5	

UNIT	NAME OF TOPICS	Hours
	Chapter - 3.2 APPLICATION OF VECTOR PRODUCT OF TWO VECTORS & SCALAR TRIPLE PRODUCT Definition of moment of a force. Definition of scalar product of three vectors - Geometrical meaning – Coplanar vectors. Simple Problems.	5
III	Chapter - 3.3 VECTOR TRIPLE PRODUCT & PRODUCT OF MORE VECTORS Definition of Vector Triple product, Scalar and Vector product of four vectors Simple Problems.	4
	INTEGRAL CALCULUS - I	
	Chapter - 4.1 INTEGRATION - DECOMPOSITION METHOD Introduction - Definition of integration - Integral values using reverse	5
	process of differentiation – Integration using decomposition method. Simple	
	Problems.	
IV	Chapter - 4. 2 INTEGRATION BY SUBSTITUTION Integrals of the form $\int [f(x)]^n f'(x) dx$, $n \neq -1$, $\int \frac{f'(x)}{f(x)} dx$ and $\int F[f(x)]f'(x) dx$. Simple Problems.	5
	Chapter - 4.3 STANDARD INTEGRALS	
	Integrals of the form $\int \frac{dx}{a^2 + x^2}$, $\int \frac{dx}{x^2 - a^2}$ and $\int \frac{dx}{\sqrt{a^2 - x^2}}$. Simple	4
	Problems INTEGRAL CALCULUS – II	
	Chapter - 5.1/ INTEGRATION BY PARTS	
	Integrals of the form $\int x \sin nx dx$, $\int x \cos nx dx$, $\int x e^{nx} dx$, $\int x^n \log x dx$	5
	and ∫ tog x dx Simple Problems.	
v	Chapter -5.2 BERNOULLI'S FORMULA	
	Evaluation of the integrals $\int x^m \sin nx dx$, $\int x^m \cos nx dx$ and $\int x^m e^{nx} dx$ where $m \le 2$ using Bernoulli's formula. Simple Problems.	4
	Chapter - 5.3 DEFINITE INTEGRALS	
	Definition of definite Integral. Properties of definite Integrals - Simple Problems.	5

<u>Text Book:</u> Mathematics for Higher Secondary – I year and II year (Tamil Nadu Text Book Corporation) **Reference Book:**

Engineering Mathematics - Dr.M.K.Venkatraman, National Publishing Co, Chennai Engineering Mathematics - Dr.P.Kandasamy & Others, S.Chand & Co Ltd, New Delhi.

Board Examination – Question Paper Pattern

Time: 3 Hrs. Max.Marks: 75

The Question paper will be in the pattern as indicated below:

PART A - 5 Questions to be answered out of 8 for 2 marks each.

PART B - 5 Questions to be answered out of 8 for 3 marks each.

PART C - 10 Questions to be answered out of 15 for 5 marks each.

These Questions is to be numbered from 1 to 31 continuously where in the Question No.17 pertaining to the very first question of PART – C would be compulsory question (can be asked from any one of the units) which would test the analytical ability of the student.

The complete syllabus is covered with equal weightage

PART A	5 x 2 marks	10 Marks
PART B	5 x/3 marks	15 Marks
Short answer type questions	V	
PART C	10 x 5 marks	50 Marks
Descriptive answer type questions		
Total //	75 Marks	

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING - SYLLABUS M-SCHEME

(Implements from the Academic Year 2015-2016 on wards)

Course Name: All Branches of Diploma in Engineering and Technology and Special Programmes

Except DMOP, HMCT and Film & TV

Subject Code: 30023

Semester : II Semester

Subject Title : APPLIED MATHEMATICS

TRAINING AND SCHEME OF EXAMINATION:

No. of Weeks per Semester: 15 Weeks

Subject	Inst	ructions		Exami	nation \\	
Annilad	Hours / Week	Hours / Semester		Marks		S. ration
Applied Mathematics	5 Hrs.	75 Hrs.	Internal Assessment	Semester Examination	Total	Duration
			25	75	100	3 Hrs

TOPICS AND ALLOCATION OF HOURS:

SI.No.	Topics	Time (Hrs.)
1	Probability Distribution – I	14
2	Probability Distribution – II	14
3	Application of Differentiation	14
4	Application of Integration	14
5	Application of Integration - II	14
	Test and Tutorial	5
	TOTAL	75

Rationale: Many of Physical Engineering Problems like vibration of two side tied strings, Heaf flow, decaying of radioactive material comes only in the form of differential equation, solution of differential equation gives solution of Physical Problems.

Objectives: This subject helps the students to acquire knowledge of finding areas and volumes using Integration and various methods of solving first and second order differential Equations. This subject also helps the students to become aware of various methods of solving algebraic and transcendental equations.

DETAILED SYLLABUS

CONTENTS

UNIT	NAME OF TOPICS	Hours	
	PROBABILITY DISTRIBUTION – I		
	Chapter - 1.1 RANDOM VARIABLE	5	
	Definition of Random variable – Types – Probability mass function –		
	Probability density function. Simple Problems.		
	Chapter - 1.2 MATHEMATICAL EXPECTATION	$//\sim$	
	Mathematical Expectation of discrete random variable, mean and variance)4	
•	Simple Problems.		
	Chapter - 1.3 BINOMIAL DISTRIBUTION		
	Definition of Binomial distribution $P(X = x) = nC_x p^x q^n$ where		
	x = 0,1,2, Statement only. Expression for mean and variance. Simple	5	
	Problems.		
	PROBABILITY DISTRIBUTION – II		
	Chapter - 2.1 POISSION DISTRIBUTION		
	Definition of Poission distribution $P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}$ where	5	
	x = 0,1,2, (statement only). Expressions of mean and variance. Simple		
II	Problems.		
•	Chapter - 2.2 NORMAL DISTRIBUTION Definition of normal and standard normal distribution – statement only.		
	Constants of normal distribution (Results only). Properties of normal	5	
	distribution - Simple problems using the table of standard normal distribution.		
	Chapter - 2.3 CURE FITTING Fitting of straight line using least square method (Results only). Simple	_	
	problems	4	
	APPLICATION OF DIFFERENTIATION	_	
	Chapter – 3.1 VELOCITY AND ACCELERATION Velocity and Acceleration – Simple Problems.	5	
/	\// '		
III	Chapter - 3.2 TANGENT AND NORMAL Tangent and Normal – Simple Problems.	4	
	Chapter - 3.3 MAXIMA AND MINIMA		
	Definition of increasing and decreasing functions and turning points. Maxima	5	
	and Minima of single variable only – Simple Problems.		

UNIT	NAME OF TOPICS	Hours
	APPLICATION OF INTEGRATION – I	
	Chapter - 4.1 AREA AND VOLUME	5
	Area and Volume - Area of Circle. Volume of Sphere and Cone - Simple	
	Problems.	
IV	Chapter - 4.2 FIRST ORDER DIFFERENTIAL EQUATION	, (
	Solution of first order variable separable type differential equation .Simple Problems.	5
	Chapter - 4.3 LINEAR TYPE DIFFERENTIAL EQUATION	
	Solution of linear differential equation. Simple problems.	9
	APPLICATION OF INTEGRATION – II	
	Chapter – 5.1 SECOND ORDER DIFFERENTIAL EQUATION – I	
	Solution of second order differential equation with constant co-efficients in	_
	the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$ where a, b and c are constants.	4
	Simple Problems.	
	Chapter - 5.2 SECOND ORDER DIFFERENTIAL EQUATION - II	
v	Solution of second order differential equations with constant co-efficients in	
V	the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = (f(x))$ where a, b and c are constants	5
	and $f(x) = e^{mx}$. Simple Problems.	
	Chapter - 5.3 SECOND ORDER DIFFERENTIAL EQUATION - III	
	Solution of second order differential equation with constant co-efficients in	
	the form $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$ where a, b and c are constants	5
	and $f(x) = \sin mx$ or $\cos mx$. Simple Problems.	

Text Book:

Mathematics for Higher Secondary – I year and II year (Tamil Nadu Text Book Corporation)

Reference Book:

Engineering Mathematics - Dr.M.K. Venkatraman, National Publishing Co, Chennai Engineering Mathematics - Dr.P.Kandasamy & Others, S.Chand & Co Ltd, New Delhi.

Board Examination – Question Paper Pattern

Time: 3 Hrs. Max.Marks: 75

The Question paper will be in the pattern as indicated below:

PART A - 5 Questions to be answered out of 8 for 2 marks each.

PART B - 5 Questions to be answered out of 8 for 3 marks each.

PART C - 10 Questions to be answered out of 15 for 5 marks each.

These Questions is to be numbered from 1 to 31 continuously where in the Question No.17 pertaining to the very first question of PART - C would be compulsory question (can be asked from any one of the units) which would test the analytical ability of the student.

The complete syllabus is covered with equal weightage

PART A	5 x 2 marks	10 Marks
PART B	5 x/3 marks	15 Marks
Short answer type questions	V	
PART C	10 x 5 marks	50 Marks
Descriptive answer type questions		
Total /	75 Marks	

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name : All branches of Diploma in Engineering and Technology and

Special Programmes except DMOP, HMCT and Film & TV

Subject Code : 30024

Semester : II Semester

Subject Title : ENGINEERING PHYSICS - II

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester. 15 weeks

Subject	Ins	tructions	Exa	amination V	arks	Duration
Cubjoot	Hours /Week	Hours/Sem.	Internal	Board	Total	Daration
ENGINEERING PHYSICS - II	4 Hrs	60	25	75	100	3Hrs

Topics and Allocation of Hours:

SI.No.	Topic	Time(Hrs)
1.	HEAT	10
2.	THERMODYNAMICS, LIQUEFACTION OF	10
۷.	GASES& NON-CONVENTIONAL ENERGY	10
3.	LIGHT AND REMOTE SENSING	10
4.	ELECTRICITY	10
5.	ELECTRONICS	10
6.	REVISION 4 TEST + MODELEXAM	10
	Total	60

RATIONALE

The exponential growth of Engineering and Technology has benefited the manking with extreme sophistication and comfort. To sustain this development, continuous research and development should take place not only in Engineering and Technology but also in Basic Science such as Physics.

The various divisions of Physics like Optics, Acoustics, Dynamics, Semiconductor Physics, Surface Physics, Nuclear Physics, Energy Studies, Materials Science, etc provide the Foundation by enlightening the Fundamental facts, Principles, Laws and Correct sequence of events to develop the Engineering and Technology field for the prosperity of human beings.

OBJECTIVES:

At the end of the study of II Semester the student will be able to

- Identify good conductors and insulators of heat.
- Analyze the relation between pressure, volume and temperature of gas.and to interpret the results.
- Understand the process of Isothermal and Adiabatic changes of gas and basic laws of thermodynamics.
- · Acquire knowledge about liquefaction process of gases.
- Realize the inevitable need for tapping Alternate energy to address the looming energy crisis.
- Identify the characteristics and properties of LASER, Optical fiber.
- Acquire broader ideas about the process of remote sensing in tapping .the earth resources for human benefits.
- Acquire knowledge about heating, chemical and magnetic effects of electric current.
- Gain broader ideas of capacitors, diodes, transistors, integrated circuits and logic gates.
- Identify, analyze and solve Engineering field related problems involving expressions derived in all the above topics.

30024 ENGINEERING PHYSICS – II DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
ı	<u>HEAT</u>	
	1.1 TRANSFER OF HEAT	3 Hrs
	Concept of Heat and Temperature - Centigrade, Fahrenheit and Kelvin	
	scales of temperature measurement- Conduction, convection and	
	radiation - Definitions and explanations-Coefficient of thermal	
	conductivity-Definition and SI unit- good and poor conductors- Examples- Properties of thermal radiation	
	1.2 KINETIC THEORY OF GASES	4 Hrs
	Postulates -Mean square velocity and Root Mean Square(RMS)velocity	
	of molecules- Definitions and expressions -Expression for the pressure	
	of a gas on the basis of postulates of kinetic theory of gases - Relation	
	between pressure, kinetic energy and absolute temperature of the gas-	
	Simple problems based on the expression for the pressure of a gas	
	1.3 SPECIFIC HEAT CAPACITY	3 Hrs
	Specific heat capacity of a substance (solids and liquids) -Definition -	
	Specific heat capacity of a gas at constant volume - Specific heat	
	capacity of a gas at constant pressure- Ratio of specific heat capacities -	
(Explanation for Cp is greater than Cv - Derivation of Mayer's relation -	
	calculation of Universal gas constant R from the gas equation PV= RT.	
	Simple problems based on Mayer's relation.	

Unit	Name of the Topic	Hours
II	THERMODYNAMICS, LIQUEFACTION OF GASES AND NON-CONVENTIONAL ENERGY	
	2.1 THERMODYNAMICS	4 Hrs
	First law of thermodynamics – Statement-Isothermal and Adiabatic changes - Explanation – Equations for isothermal and adiabatic changes (No derivation)Simple problemsbased on equations $P_1V_1 = P_2V_2$ and $P_1V_1^{Y} = P_2V_2^{Y}$ Second law of thermodynamics –Clausius statement and	
	Kelvin's statement – Working of Carnot's reversible engine with indicator diagram and its efficiency.	<i>)</i>
	2.2 LIQUEFACTION OF GASES	3 Hrs
	Critical temperature, critical pressure and critical volume – Definitions – Principle used in cascade process – Cascade process of liquefaction of oxygen – Disadvantages of cascade process – Joule Thomson effect – Temperature of inversion – Liquefaction of air by Linde's process.	
	2.3 NON – CONVENTIONAL ENERGY	3 Hrs
	Introduction – Non-renewable and Renewable (Alternate) energy sources – Examples Solar energy, wind energy, – Advantages and disadvantages of renewable energy.	

Unit	Name of the Topic	Hours		
III	LIGHT AND REMOTE SENSING			
	3.1 OPTICs	4 Hrs		
	Refraction – Laws of refraction – Refractive index of a medium – Definition –Spectrometer –Derivation of refractive index of glass prism			
	using minimum deviation-Experimental determination of refractive index using spectrometer-Fibre optics – Introduction –Phenomenon of total			
	internal reflection –problems using the refractive index . 3.2 LASER			
	LASER - Characteristics of LASER - principle of LASER - Spontaneous			
	emission – Stimulated emission – population inversion – Ruby laser-Construction and working- Uses of LASER.			
	3.3 REMOTE SENSING	3 Hrs		
	Remote sensing - Introduction - Active and passive remote			
	sensing - Explanation and examples - Components of remote			
	sensing - Data acquisition, data analysis and reference data -			
	RADAR – principle and working with block diagram.			

Unit	Name of the Topic	Hours
IV	ELECRICITY	
	4.1 ELECTRICAL CIRCUITS	3 Hrs
	Ohm's law - Laws of resistances - Resistivity, Conductivity ,Super conductivity and Meissner effect- Definitions - Kirchhoff's current and	
	voltage laws – Condition for balancing the Wheatstone's bridge .Simple problems based on expression for resistivity.	
	4.2 EFFECTS OF CURRENT	4 Hrs
	Joule's law of heating – Experimental determination of specific heat capacity of a liquid using Joule's calorimeter –Faraday's laws of electrolysis – Electro chemical equivalent(e.c.e) of an element –	
	Definition – Experimental determination of e.c.e. of copper- Capacitance of a capacitor – Definition – 'farad' – Definition – expressions for effective capacitance when capacitors are connected in series and in parallel –	
	Simple problems based on expressions for e.c.e., effective capacitance for series and parallel connections of capacitors.	
	4.3 MEASURING INSTRUMENTS	3 Hrs
	Expression for the force acting on a current carrying straight conductor placed in a uniform magnetic field – Fleming's Left Hand rule – Expression for the torque experienced by a rectangular current carrying coil placed inside a uniform magnetic field –	
	Working of a moving coil galvanometer and its merits – Conversion of galvanometer into an Ammeter and Voltmeter. Simple problems based on conversion of galvanometer into ammeter and voltmeter.	

Unit	Name of the Topic	Hours
V	ELECTRONICS	
	5.1 SEMI CONDUCTORS	3 Hrs
	Semi conductors - Energy bands in solids - Energy band diagram of	
	good conductors, insulators and semi conductors- Concept of Fermi	
	level - Intrinsic semiconductors -Concept of holes - Doping - Extrinsic	
	semiconductors – P type and N type semiconductors.	
	5.2 DIODES AND TRANSISTORS	4 Hrs
	P-N junction diode - Forward bias and reverse bias -Rectification action	
	of diode - Working of full wave rectifier using P N junction diodes - PNP	
	and NPN transistors - Three different configurations - Advantages of	
	common emitter configuration - Working of NPN transistor as an	
	amplifier in common emitter configuration.	
	5.3 DIGITAL ELECTRONICS	3 Hrs
	Digital electronics – Introduction – Logic levels – Basic logic gates: OR,	
	AND and NOT gates - Universal logic gates: NAND and NOR gates -	
	Symbolic representation, Boolean expression and Truth table for all	
	above logic gates - Integrated circuits- Levels of integration - SSI, MSI,	
	LSI and VLSI-Advantages of ICs.	

Text Book

- 1 Engineering Physics ,DOTE, Tamil Nadu
- 2 Physics Higher secondary First & Second year Volume I & II TamilNadu Text Book Corporation 2004 & 2005

Reference Book

- 1 Fundamentals of physics Brijlal and Subramaniam
- 2 Fundamentals of Electricity D.N. Vasudeva S. Chand & co
- 3 Non- Conventional energy sources G.D. Rai.- Khanna publishers
- Text book of Remote sensing and Geographical information systems M. Anji Reddy BS publications.

Board Examination – Question Paper Pattern

Time: 3 Hrs. Max.Marks: 75

The Question paper will be in the pattern as indicated below:

PART A - 5 Questions to be answered out of 8 for 2 marks each.

PART B - 5 Questions to be answered out of 8 for 3 marks each.

PART C - 10 Questions to be answered out of 15 for 5 marks each.

These Questions is to be numbered from 1 to 31 continuously where in the Question No.17 pertaining to the very first question of PART – C would be compulsory question (can be asked from any one of the units) which would test the analytical ability of the student.

The complete syllabus is covered with equal weightage

PART A	5 x 2 marks	10 Marks
PART B	5 x/3 marks	15 Marks
Short answer type questions	\	
PART C	10 x 5 marks	50 Marks
Descriptive answer type questions		
Total	75 Ma	rks

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name: All Branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and Film & TV

Subject Code: 30025

Semester : II Semester

Subject Title: ENGINEERING CHEMISTRY - II

TEACHING AND SCHEME OF EXAMINATION:

No. of Weeks per Semester: 15 Weeks

	Instru	ıctions		Examinat	ion))
				Marks (
Subject	Hours/ Week	Hours/ Semester	Internal Assessment	Board Examination	Total	Duration
ENGINEERING CHEMISTRY - II	4	60	25	75	100	3 Hrs

Topics and Allocation of Hours:

SI. No	Topics	Time (Hours)
1	Environmental Chemistry	10 Hours
2	Fuels, Combustion and Refractories	12 Hours
3	Extraction of metals, Powder Metallurgy, Alloys and Abrasives	10 Hours
4	Cement, Ceramics, Lobricants and Adhesives	10 Hours
5	Polymer Chemistry	10 Hours
6	Revision and Examinations	08 Hours
	// Total	60 Hours

RATIONALE:

Modern development of industries require more understanding of materials required for Engineering and industrial purposes. This part of chemistry explains various aspects with regard to environment, fuels, metals and alloys and polymers. This subject will develop basic understanding and skill of Engineering Students.

OBJECTIVES:

The objective of this Course is to make the student:

- 1. To acquire knowledge about Environmental Chemistry.
- 2. To acquire knowledge about fuels, advantages and combustion of fuels and analysis and refractories.
- 3. To know about extraction of metals, powder metallurgy, alloys, and abrasives.
- 4. To acquire knowledge about cement, ceramics, lubricants and adhesives.
- 5. To know about polymer materials.

30025 ENGINEERING CHEMISTRY – II

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
I	ENVIRONMENTAL CHEMISTRY	
	1.1 Air Pollution	4 Hrs
	Pollution and Air pollution - Definition - Air pollutants (SO ₂ , H ₂ S, HF, CO) and	
	Dust) - Harmful effects - Formation of Acid Rain - Harmful effects - Green	
	House Effect - Causes - Global warming - Harmful effects - Ozone Layer)	
	Importance - Causes for Depletion of Ozone Layer (No equations) - Effects of	
	Ozone Layer Depletion – Control of Air Pollution.	
	1.2 Water Pollution	3Hrs
	Causes of Water Pollution - Sewage, Effluents, Algae and Microorganisms -	
	Harmful effects - Sewerage - Definition - Sewage Disposal - Industrial	
	Effluents – Harmful effects of Effluents – Harmful effects of Heavy Metal Ions –	
	Lead, Cadmium, Zinc and Copper - Treatment of Effluents - Eutrophication -	
	Definition and harmful effects	
	1.3 Solid Waste Management	1 Hr
	1.5 Cond Waste Management	
	Solid Waste - Definition - Problems - Types of Solid Waste - Methods of	
	disposal Land fill and Incineration.	
	1.4 Green Chemistry	2 Hrs
	Definition - Goals of Green Chemistry (Basic ideas) - Recycling - Definition -	
	Examples – Advantages of Recycling (Basic ideas)	

Unit	Name of the Topic	Hours
II	FUELS, COMBUSTION AND REFRACTORIES	
	2.1 Fuels	6 Hrs
	Fuel and fossil fuel - Definition - Calorific value - Classification of fuels - Solid	\triangleright
	fuels - Wood - Coal - Varieties of Coal - Composition - Specific uses - Liquid	
	fuels - Petroleum - Fractional distillation - Fractions and uses - Cracking	
	(Concept only) - Liquid Hydrogen as fuel - Gaseous fuels - Preparation	
	composition and specific uses of Producer gas and Water gas - Composition	
	and uses of CNG and LPG - Relative advantages of solid, liquid and gaseous	
	fuels.	
	2.2 Combustion	4 Hrs
	Definition - Combustion calculation by mass (for solid and liquid fuels) -	
	Combustion calculation by volume (for gaseous fuels) - Stoichiometric	
	calculations - Volume of air required - Excess air - Definition of Flue gas -	
	Flue gas Analysis – Orsat Apparatus – Simple numerical problems.	
	2.3 Refractory	2 Hrs
	Definition - Requirements of a good Refractory - Classification - Acidic, Basic	
	and Neutral Refractory - Examples and uses - Uses of Fireclay bricks,	
	Alumina bricks and Silica bricks.	

Unit	Name of the Topic	Hours
III	EXTRACTION OF METALS, POWDER METALLURGY, ALLOYS AND ABRASIVES	
	3.1 Extraction of metals	2 Hrs
	Extraction of Tungsten and Titanium – Uses of Tungsten and Titanium.	
	3.2 Powder metallurgy	2 Hrs
	Definition - Preparation of Metal Powder - Atomization - Reduction of Metal-	
	Oxide – Applications of Powder Metallurgy.	
	3.3 Alloys	3 Hrs
	Definition - Purpose of alloying - Types - Ferrous Alloys - Composition and	
	uses of Stainless Steel, Chromium Steel and Vanadium Steel Nori-ferrous	
	alloys - Composition and uses of Nichrome, Dutch metal, German silver,	
	Gun metal and Duralumin.	
	3.4 Abrasives	3 Hrs
	Definition - Classification - Hardness in Mon's scale - Natural abrasives -	
	Diamond, Corundum, Emery and Garnet Synthetic abrasives - Carborundum	
	- Boron carbide - Manufacture - Properties and uses.	

Unit	Name of the Topic	Hours
IV	CEMENT, CERAMICS, LUBRICANTS AND ADHESIVES	
	4.1 Cement	3 Hrs
	Definition – Manufacture of Portland Cement – Wet Process – Setting of cement (No equation).	
	4.2 Ceramics	3 Hrs
	White pottery – Definition – Manufacture of White pottery – Uses – Definition of glazing – Purpose – Method – Salt glazing.	
	4.3 Lubricants	2 Hrs
	Definition – Characteristics of Lubricant – Types of Lubricants – Solid, Semisolid and Liquid Lubricants.	
	4.4 Adhesives	2 Hrs
	Definition - Requirements of good adhesives - Natural adhesive - uses of	
	Shellac, Starch, Asphalt – Synthetic adhesive – uses of Cellulose Nitrate, PVC, Phenol-formaldehyde and Urea-formaldehyde.	

Unit	Name of the Topic	Hours
V	POLYMERS	
	5.1 Plastics	4 Hrs
	Polymerization – Definition – Types of polymerization – Addition polymerization	
	- Formation of Polythene - Condensation polymerization - Formation of	
	Bakelite - Types of plastics - Thermoplastics and Thermoset plastics	\rightarrow
	Differences - Mechanical properties of plastics - Advantages of plastics over	
	traditional materials (Wood and Metal) - Definition of Reinforced or filled	
	plastics - Advantages - Applications - Polymers in Surgery - Biomaterials)	
	Definition – Biomedical uses of Polyurethane, PVC, Polypropylene and Polyethylene.	
	5.2 Rubber	4 Hrs
	Definition - Preparation from Latex - Defects of natural rubber-Compounding	
	of rubber - Ingredients and their functions - Vulcanization - Definition and	
	Purpose – Reclaimed rubber – Definition – Process – Properties and uses.	
	5.3 Composite materials	2 Hrs
	Definition – Examples – Advantages over metals and polymers – General applications.	

Text Book

- 1) Engineering Chemistry Jain & Jain Dhanpat Rai & Sons.
- 2) A Text Book of Engineering Chemistry S.S. Dara S. Chand Publication.

Reference Book:

- Chemistry of Engineering Material-C.V.Agarwal, Andranaidu C.Parameswara Moorthy B.S.Publications.
- 2) Engineering Chemistry Uppal Khanna Publishers.
- 3) A Text Book of Inorganic Chemistry P.L.Soni S.Chand Publication.
- 4) Rain Water Harvesting Hand Book Chennai Metro Water.

Board Examination – Question Paper Pattern

Time: 3 Hrs. Max.Marks: 75

The Question paper will be in the pattern as indicated below:

PART A - 5 Questions to be answered out of 8 for 2 marks each.

PART B - 5 Questions to be answered out of 8 for 3 marks each.

PART C - 10 Questions to be answered out of 15 for 5 marks each.

These Questions is to be numbered from 1 to 31 continuously where in the Question No.17 pertaining to the very first question of PART - C would be compulsory question (can be asked from any one of the units) which would test the analytical ability of the student.

The complete syllabus is covered with equal weightage

PART A	5 x 2 marks	10 Marks	
PART B	5 x 3 marks	15 Marks	
Short answer type questions			
PART C	10 x 5 marks	50 Marks	
Descriptive answer type questions			
Total	75 Marks		

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name :All branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and film & TV.

Subject Code : 30026

Semester : II Semester

Subject Title : ENGINEERING GRAPHICS – II

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 15 weeks

Subject	Instructions		Examination /	
	Hours /	Hours /	Marks	
	Week	Semester	maine //	
ENGINEERING GRAPHICS - II	5	75	Internal Board Total Do	uration
			25 100 3	3 Hrs.

Topics and Allocation of Hours

SI.No.	Topics	Hours.
1	Constructions of special curves,	18 Hrs.
2	Development of surfaces	17 Hrs.
3	Projection of solids, Section of Solids	20 Hrs
4	Isometric projections	20Hrs.
	Total	75 Hrs.

RATIONALE;

Engineering graphics is a basic subject for all branches of Diploma Engineering and Technology. Since engineering drawing is considered as the language of engineers, the proper understanding and practice is required with proper instruments.

This subject is aimed at providing basic understanding of the fundamentals of Engineering Drawing; mainly visualization, graphics theory, standards & conventions of drawing, the tools of drawing and the use of Drawings in engineering applications.

The topics covered are based on the syllabus for Diploma studies in engineering. The subject is planned to include sufficient practices which would help the student in visualization of three dimensional objects and developing the drawing.

The chapters are arranged in sequence and starts from the basic concepts of constructions of special curves and polygons, proceeds to the principles of projection solids and section of solids. By the end of the subject it is expected that the students would be matured to visualize any engineering component by reading an engineering drawing.

OBJECTIVES:

At the end of the practice, the students will be able to,

- Understand the importance of drawing.
- Identify and uses of the drawing instruments.
- · Acquire knowledge about the construction of special curves.
- Draw the development of solids and objects.
- Draw the projection and sectional views of solids and true shape.
- Construct orthographic views into isometric drawings.

30026 ENGINEERING GRAPHICS – II DETAILED SYLLABUS

Contents: Theory

	nts: Theory	
Unit	Name of the Topic	Hours
I	1.1 Constructions of special curves - Polygons	18
	Geometric curves: Definition - construction of cycloid - epicycloids	
	hypocycloid – exercises.	
	Involutes of a circle - Archimedean spiral – helix – exercises.	\bigcirc
	1.2 Construction of Polygon:	
	Construct triangle, square, pentagon, hexagon by side distance in various	
	positions - construction by inscribe & circumscribe a circle and by angle.	
П	2.1 Development of surfaces	17
	Methods of development - Need for development - Development of prism,	
	cylinder, cone and pyramids, truncated prisms and cylinder, frustum of	
	pyramids and cone - Exercises in triangular, square, pentagon and	
	hexagon prisms and pyramids - Cylinder and cone.	
	Development of miscellaneous objects - T-pipe, elbow, ducts, tray, lamp	
	shade and funnel.	
III	3.1 Projection of solids	20
	Introduction - important terms < classification of solids - polyhedron -	
	solids of revolution -triangular and hexagonal prisms and pyramids -	
	cylinder and cone.	
	Projections of solids in simple positions - Axis parallel to one plane and	
	perpendicular to other plane axis inclined to one plane and parallel to	
	other plane - axis parallel to both planes - exercises.	
	3.2 Section of Solids	
	Introduction terminology - true shape - sectional view - need for sectional	
	view - cutting plane - section lines - triangular and hexagonal prisms and	
	pyramids cylinder and cone.	
	Position of solids - Axis parallel to one plane and perpendicular to other	
<	plane - axis parallel to both planes - exercises.	
	Rosition of cutting planes – cutting plane perpendicular to one plane and	
	parallel to another plane - section plane perpendicular to one plane and	
	inclined to another plane.	
VIV	4.1 Isometric projections	20
	Introduction – isometric view - isometric projection – methods of drawing	
	an isometric view - box method - isometric view of solids - isometric view	
	of truncated solids - Isometric view irregular curves - circles in isometric	
	method – four centre method for drawing an ellipse - arcs of circles in	
	isometric view.	
	Isometric view of the object from the given orthographic view - exercises.	

Text Books

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2. Gill P.S., "Engineering drawing", S.K.Kataria & Sons.

Reference Books

- 1. Gopalakrishnan.K.R., "Engineering Drawing", (Vol.I and Vol.II), Dhanalakshmi publishers, Edition 2, 1970
- 2. Venugopal.K, Sreekanjana G, "Engineering Graphics" New Age International Publishers.
- 3. K V Nataraajan "A Text Book of Engineering Drawing"
- 4. Besant Agrawal, C M Agrawal "Engineering drawing", Tata McGraw Hill Education Private Limited.
- 5. Barkinson & Sinha, "First Year Engineering Drawing", Pitman Publishers.

Board Examination – Question pattern

Time: 3 Hrs. Max.Marks: 75

[Note: Answer all the questions in the drawing sheet only.]

Part A

Eight questions will be asked. (1 to 8). Two questions in each unit.

Answer any five questions. Each question carries five marks.

5X5 ⊼ 25

Drawings only - Basic construction - simple view and projections

Part B

Eight questions will be asked. (9 to 16). Two questions in each units

Answer any five questions. Each question carries ten marks.

5×10 =50

Drawings only.

ATØTA

75

25

Internal Marks

10

10

5

Assignment drawings

Test

Attendance

25

Total

-000-

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name : All branches of Diploma in Engineering and Technology and

Special Programmes except DMOP, HMCT and Film & T

Subject Code : 30027

Semester : II Semester

Subject Title : ENGINEERING PHYSICS - II PRACTICAL

TEACHING AND SCHEME OF EXAMINATION:

No of weeks per semester: 15 weeks

Subject	Ins	tructions	Examii	nation M	arks	Duration
	Hours /Week	Hours/Sem.	Internal	30ard	Total	
ENGINEERING PHYSICS – II PRACTICAL	2 Hrs	30	25	75	100	3Hrs

RATIONALE:

In Diploma level Engineering education skill development plays a vital role. The skill development can be achieved by on hand experience in handling various instruments, apparatus and equipment. This is accomplished by doing engineering related experiments in practical classes in various laboratories.

GUIDELINES:

All the Eight experiments given in the list of experiments should be completed and given for the end semester practical examination.

- In order to develop best skills in handling Instruments/Equipment and taking readings in the practical classes, every two students should be provided with a separate experimental setup for doing experiments in the laboratory.
- The external examiners are requested to ensure that a single experimental question should not be given to more than four students while admitting a batch of 30 students during Board Examinations.

ALLOCATION OF MARKS

Formula & Diagram 15 marks
Tabulation with proper units 10 marks
Observation (including taking readings) 35 marks
Calculation 10 marks
Result 05 marks

Total 75 Marks

SECOND SEMESTER 30027 - ENGINEERING PHYSICS - II PRACTICAL

All these Experiments is to be practiced and in the board practical examination all these exercises will be considered.

LIST OF EXPERIMENTS WITH OBJECTIVES:

1. REFRACTIVE INDEX

To determine the refractive index of a transparent liquid (water) using travelling Microscope.

2. SPECTROMETER.

To measure the angle of the prism and the angle of minimum deviation using Spectrometer and to calculate the refractive index of glass.

3. SOLAR CELL.

To draw the V – I characteristics of the solar cell.

4. LAWS OF RESISTANCES.

To verify the laws of resistances by connecting the two given standard resistances

- (i) in series and
- (ii) in parallel, using Ohm's law.

5.JOULE'S CALORIMETER

To determine the specific heat capacity of water.

6. COPPER VOLTAMETER.

To determine the electro chemical equivalent (e.c.e.) of copper.

7 P-N JUNCTION DIODE.

To draw the voltage – current characteristics in forward bias and to find the 'dynamic Forward resistance' & 'knee voltage' from the graph.

8. LÓGIC GATES.

To find the output conditions for different combinations of the input for NOT gate and 2 inputs AND, OR, NAND & NOR logic gates, using IC chips. (IC 7404 –NOT Gate, IC 7408 – AND Gate, IC 7432 – OR gate, IC 7400 – NAND Gate, IC 7402 – NOR Gate)

SECOND SEMESTER 30027 - ENGINEERING PHYSICS – II PRACTICAL

LIST OF EQUIPMENT

1. REFRACTIVE

Travelling Microscope, Beaker with transparent liquid and Saw dust.

2. SPECTROMETER.

Spectrometer, Sodium vapour lamp, Reading lens and Glass prism,

3. SOLAR CELL.

Solar cell Kit for drawing the V - I characteristics

4. LAWS OF RESISTANCES.

Battery Eliminator, key, rheostat, ammeter, voltmeter, Connecting wires and two known standard resistances.

5. JOULE'S CALORIMETER.

Joule's Calorimeter, Battery eliminator, Rheostat, Key, Ammeter, voltmeter, stop clock, thermometer, digital Balance and connecting wires.

6. COPPER VOLTAMETER.

Copper Voltameter, Battery eliminator, Rheostat, Key, Ammeter, stop clock, digital balance, emery sheet and Connecting wires.

7. P-N/JUNCTION DIODE.

19-N Junction Diode forward characteristics kit.

8. LOGIC GATES.

Logic gates testing apparatus kit with bread board for Mounting ICs and Integrated circuit chips (IC 7404 –NOT Gate, IC 7408 – AND Gate, IC 7432 – OR gate, IC 7400 – NAND Gate, IC 7402 – NOR Gate)

SECOND SEMESTER 30027 - ENGINEERING PHYSICS – II PRACTICAL

MODEL QUESTION PAPER

- 1. Determine the refractive index of the given transparent liquid using traveling Microscope.
- 2. Draw the V I characteristics of the solar cell.
- 3. Measure the angle of the prism and the angle of minimum deviation using Spectrometer and then calculate the refractive index of glass.
- 4. Verify the laws of resistances by connecting the two given standard resistances (i) in series and (ii) in parallel, using Ohm's law.
- 5. Determine the specific heat capacity of water, using Joule's calorimeter.
- 6. Determine the electro chemical equivalent (e.c.e.) of copper using Copper Voltameter.
- 7. Draw the voltage current characteristics of a P-N junction diode in forward bias and then find the 'dynamic forward resistance' & 'knee voltage' from the graph.
- 8. Find the output conditions for different combinations of the input for NOT gate and 2 inputs AND, OR, NAND & NOR logic gates using IC chips.

The college authority should ensure the safety to all the students during the workshop and the lab practical.

-000-

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015 - 2016 onwards)

Course Name: All Branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and Film & TV

Subject Code: 30028

Semester : II Semester

Subject Title: ENGINEERING CHEMISTRY - II PRACTICAL

SCHEME OF INSTRUCTIONS AND EXAMINATION:

No. of Weeks per Semester: 15/Weeks

	1101 01 1100110 100 251110 110 110						
	Instructions		Examination				
			Marks, \(\)				
Subject	Hours/ Week	Hours/ Semester	Internal Assessment/ Record	Board Examination	Total	Duration	
ENGINEERING CHEMISTRY - II PRACTICAL	2	30	25	75	100	3 Hours	

OBJECTIVES:

- 1. At the end of the program the student will be able to identify the acid and basic radical present in the given Inorganic simple salt.
- 2. To analyse the given effluent and to find out presence of heavy metal ion present it.
- 3. To study about the harmful effects of the metallic pollutant.

INTERNAL ASSESSMENT/RECORD : 25 MARKS BOARD EXAMINATION : 75 MARKS

FOR	MARKS
ANALYSIS OF SIMPLE SALT	46
ANALYSIS OF EFFLUENT	24
VIVA-VOCE	05
TOTAL	75

ENGINEERING CHEMISTRY – II PRACTICAL

CONTENTS

Intellectual Skills

1. Studying the effect of heating on substances and reagents

2. Study of the reactions of the following radicals leading to qualitative analysis of the given Inorganic simple salt soluble in water or dilute acids

3. Studying the harmful effects of effluents

Acid Radicals : Carbonate, Chloride, Nitrate and Sulphate

Basic Radicals: Lead, Copper, Aluminium, Zinc, Barium, Calcium, Magnesium

and Ammonium

Motor Skills

1. Handling the apparatus carefully

2. Awareness on Industrial safety

I. Analysis of Inorganic simple salt (QUALITATIVE ANALYSIS)

Analysis of eight inorganic simple salts containing any one acid radical and basic radical without omitting any of the above mentioned radicals.

II. Analysis of Effluent containing Lead, Cadmium, Copper and Zinc metal ions (EFFLUENT ANALYSIS)

Analysis of four effluents, each containing the above mentioned metal ions. Report on the metallic pollutant with procedure (Basic Radical Analysis Procedure) and their harmful effects.

MODEL QUESTION PAPER

3 Hours

- 1. Analyse the given loorganic simple salt and report the acid radical and basic radical present in it.
- 2. Analyse the given sample of effluent and report the metallic pollutant present in it with procedure and its harmful effects.

SCHEME OF EVALUATION

FOR	MARKS
ANALYSIS OF SIMPLE SALT	46
ANALYSIS OF EFFLUENT	24
VIVA-VOCE	05
TOTAL	75

I. QUALITATIVE ANALYSIS:

FOR	MARKS
Identification of Acid Radical with Systematic Procedure	23 \\
Identification of Basic Radical with Systematic Procedure	⟨23 \

*

Identification of Acid Radical with confirmatory test	/	\bigvee	10	
Identification of Basic Radical with confirmatory test		//	1,0/	/
Mere Spotting of Acid Radical and Basic Radical (3+3)		//	Ø 6	

II. EFFLUENT ANALYSIS:

FOR	MARKS
Identification of metallic pollutant with systematic procedure	20
Harmful effects of metallic pollutant	04

*

Group Identification Tests of metallic pollutant	10
Confirmatory Test of metallic pollutant	10
Mere Spotting of the pollutant	03

List of Apparatus to be provided for each student in Chemistry Laboratory during the Engineering Chemistry – Il Practical Classes/Board Examination in addition to the required Reagents:

SI.No.	Name of the Item	Quantity (Nos.)
1	Funnel	1
√2	Glass Rod	1
3	Test Tubes (15 x 1.5 mm)	4
4	Test Tubes (15 x 1.5 mm)	1
5	Test Tube cleaning Brush	1
6	Test Tube Holder	1
7	Test Tube Stand	1
8	Wash Bottle	1

FIRST YEAR ENGINEERING CHEMISTRY LABORATORY

LIST OF EQUIPMENTS

LIST OF EQUIPMENTS REQUIRED FOR A BATCH OF 30 STUDENTS

NON-CONSUMBALE ITEMS

SI.No.	Name of the Item	Quantity (Nos.)
1	LPG Connection	
2	Exhaust Fan (High Capacity)	Sufficient Nos.
3	Fire Extinguisher	1
4	First Aid Box (Full Set)	2
5	Safety Chart	1
6	Chemical Balance	1 (\
7	Fractional Weight Box	1
8	pH Meter	5
9	Working Table with all accessories	8

GLASSWARE AND OTHER ITEMS

Sl.No.	Name of the Item \(\)	Quantity (Nos.)
1	Burette (50 ml)	35
2	Burette Stand	35
3	Pipette (20 ml) (With safety (Bull))	35
4	Pipette (10 ml)	5
5	Conical Flask (250 ml)	35
6	Funnel (3")	50
7	Porcelain Tile	35
8	Measuring Cylinder (10 ml)	5
9	Measuring Cylinder (1000/ml)	2
10	Reagent Bottle (White) (250 ml)	60
11	Reagent Bottle (White) (125 ml)	100
12	Reagent Bottle (Amber) (250 ml)	80
13	Test Tube (15 mm x 1.5 mm)	1000
14	Test Tube (15 mm x 2.5 mm)	500
15	Test/Tube Stand	35
16\	Test Tube Holder	35
17\\	Test Tube cleaning brush	35
1) 8 (Glass Trough	5
49	Beaker (100 ml)`	35
20	Glass Rod (15 cm)	100
21	Watch Glass (3")	35
× 22	Wash Bottle (Polythene)	35
23	Nickel Spatula	35
24	Bunsen Burner for Gas connection	35
25	Plastic Bucket (15 L)	10
26	Filter Papers (Round)	Sufficient Nos.
27	Standard Flask (100 ml)	35
	<u> </u>	