Mathematics - II

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU SYLLABUS L-SCHEME

(Implements from the Academic Year 2011-2012 on wards)

Course Name : All Branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and Film & TV

Semester : I Semester

Subject Title : Mathematics - II

Training and Scheme of Examination:

No. of Weeks per Semester: 16 Weeks

Subject	Instructions		Examination			
	Hours / Week	Hours / Semester	Marks			Duration
Mathematics - II	4 Hrs.	64 Hrs.	Internal	Board	Total	
			Assessment	Examination		
			25	75	100	3 Hrs

Topics and Allocation of Hours:

Sl.No.	Торіс	Time (Hrs.)
1	Circles	11
2.	Family of Circles. Functions and Limits.	11
3.	Differentiation methods	11
4.	Application of Differentiation – I	11
5.	Application of Differentiation – II	11
	Tutorial	9
	Total	64

Rationale: The basic idea of Engineering is to develop new technologies for the effective use of materials and to produce maximum outputs thereby attain maximum profit. Differentiation is one of the major tools in the mathematics used in all fields of Engineering with these basic ideas of utilizing minimum resource and attaining maximum profit

Objectives: The student will be able to acquire knowledge of differentiation, principles and different methods, develop the ability to apply these methods to solve technical problems to execute management plans with precision.

Learning Structure:

Application	Use of derivatives in the field of Geometry to find slopes of tangents and normal in the field of physics in finding velocity and acceleration and in the field of engineering to find maxima and minima

Procedure	To explain	To explain the	To explain the	To explain the	To explain the
	usage	usage of	usage of	usage of	usage of
	equation of	concentric and	derivatives of	derivative in	differentiation in
	circle, length	orthogonal	standard	finding rate	finding
	of tangent to	circles. To	functions and	measure,	maximum and
	find location	explain the	different	velocity and	minimum. To
	of a point	usage of limits.	methods of	acceleration	explain the
	with respect	-	differentiations.	equations of	method of
	to a circle,			tangent and	finding partial
	equation of			normal.	derivatives.
	tangent to				
	the circle.				

Concepts	Different forms of equation of circles length and equation of tangent.	Equation of concentric and orthogonal circles Different types of functions.	Derivations of standard functions. Different methods of differentiation.	Usage of derivative in rate measure, velocity and acceleration finding tangents to a curve.	Usage of differentiation in finding maximum and minimum Partial differentiation for more than one variable Euler's
					Theorem.
			1		

Facts Circle, Definition of	te Definition of
centre and functions and	increasing and
radius limit. Meaning of	decreasing
$\lim x \to a.$	function.
	Definition of
	partial
	differentiation.

CONTENTS:

	Chapter No.	NAME OF TOPICS	Hours	Marks	1
		CIRCLES 1.1 Equation of circle – given centre and radius. General Equation of circle – finding centre and radius.	4	8	
	1.	1.2 Equation of circle through three non collinear points – Concyclic points. Equation of circle on the lining the points (x_1,y_1) and (x_2,y_2) as diameter.	3	7	
		1.3 Length of tangent position of a point with respect to a circle, Equation of tangent (Derivation not required)	4	7	
		FAMILY OF CIRCLES2.1 Concentric circles – Contact of circles (internal and external)Orthogonal circles – Condition for Orthogonal circles (result only).	4	7	
	2.	FUNCTIONS AND GRAPHI 2.2. Cartesian products – relations – functions. Types of functions – onto, one to one, identity, inverse. Composition, sum, difference product and quotient of functions. Linear, Polynomial, rational, exponential, reciprocal, step, signum, trigonometrical functions (definition and graph only)	4	8	
		LIMITS : 2.3. Definition of Limits $\lim_{x \to a} \frac{x^{n} - a^{n}}{x - a} a^{n-1}$, $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ $\lim_{\theta \to 0} \frac{\tan \theta}{\theta} \Rightarrow 1 \ (\theta \text{ in radian}) \ (results only) \text{ problems using the}$	3	7	
		above results.			l
	3.	DIFFERENTIATION 3.1.Definition – Differentiation of x^n , sinx, cosx, tanx, cotx, secx, cosecx, logx, e^x , $u\pm v$, uv , u/v (results only) problems using the above results.	4	7	
		3.2. Differentiation of function functions and implicit functions.	3	7	l
	-	3.3. Differentiation of Inverse Trigonometric functions and parametric functions.	4	8	1
	4.	APPLICATION OF DIFFERENTIATION – I 4.1. Successive differentiation upto second order (parametric form not included). Definition of differential equation, formation of differential equation.	4	7	
		4.2. Derivative as rate measure - velocity and acceleration.	3	7	1
		4.3. Tangents and Normals.	4	8	1
		APPLICATION OF DIFFERENTIATION – II 5.1 Definition of Increasing function, Decreasing function and turning points. Maxima and Minima (for single variable only).	3	7	
05	5.	PARTIAL DIFFERENTIATIION : 5.2. Partial differentiation of two variable upto second orders only.	4	8	l
		5.3. Definition of Homogeneous functions – Euler's Theorem.	4	7	l

Mathematics - II

MODEL QUESTION - PAPER - I

MATHEMATICS - II

Time: 3 Hours

PART - A

I. <u>Answer any 15 Questions</u>:

15 x 1 = 15

Max. Marks:75

- 1) Find the centre and radius of the circle $x^2 + y^2 + 4x 2y + 3 = 0$
- 2) Find the equation of the circle with centre (-2, -4) and radius 5 Units.
- 3) Write down the equation of the circle with end points of a diameter (x_1, y_1) and (x_2, y_2)
- 4) Show that the point (5, -12) lies outside the circle $x^2+y^2-2x+2y-60=0$
- 5) State the condition for two circles to cut orthogonally
- 6) Define function.

8)

7) Define identity function.

Evaluate Lt
$$sin 2x$$

x $3x$

9) Find
$$\frac{d}{dx} \left\{ \frac{1}{x^3} + 7\cos x \right\}$$

10) Find
$$\frac{d}{dx} \left\{ x^4 \tan x \right\}$$

11) Find
$$\frac{d}{dx} [\cos(\log x)]$$

12) Find
$$\frac{d}{dx} [\sin^{-1}(\sqrt{x})]$$

13) Find
$$\frac{d^2y}{dx^2}$$
 if y= tanx

- 14) Find the differential equation by eliminating constant r, from $x^2+y^2=r^2$
- 15) If the distance s given by $s=3t^2+5t+7$, find the velocity when t=3 seconds.
- 16) Find the slope the tangent to the curve $y=x^2-5x+2$ at the point (1,-2).
- 17) Show that the function $y=4x-x^2+7$ is the maximum at x=2.

эx

18) If
$$u = x^3 + 5x^2y + y^3$$
 find $\underline{\partial u}$, $\underline{\partial u}$
 ∂x ∂y

- 19) If $u = log(x^2+y^2)$ find <u>au</u>
- 20) State Euler's Theorem.

Mathematics - II

INADU

<u> PART - B</u>

Answer any TWO subdivisions in each question:

5 x 12 = 60

- 21 a) Find the equation of the circle passing through the point (-9,1) And having centre at (2,5)
 - b) Find the equation of the circle passing through the points (0,1),(2,3)and (-2,5)
 - c) Find the equation of the tangent at (5, -2) to the circle $x^2 + y^2 10x 14y 7 = 0$
- 22.a) Show that the circles $x^2 + y^2 4x + 6y + 8 = 0$ and $x^2 + y^2 10x 6y + 14 = 0$ touch each other.
 - b) Define and draw graph of 1) absolute function 2) x exponential function (e^x)
 - c) Evaluate Lt x^{5} -243 $x \rightarrow 3$ x^{3} -27

23.a)Differentiate the following:-

the missile

(i)
$$y = e^x \log x \sin x$$
, (ii) $y = \frac{x^2 + \sin x}{x - \cos x}$

- b) Find $\frac{dy}{dx}$ if (i) $y = \log(\sec x + \tan x)$ (ii) $ax^2 + 2hxy + by^2 = 0$
- c) Find $\frac{dy}{dx}$ if (i) $y = \cos^{-1} \frac{1-x^2}{1+x^2}$ (ii) x=a(t+cost), y=a(1+sint)
- 24.a) If $y = x^2 \cos x$, prove that $x^2 y_2 4xy_1 + (x^2+6)y = 0$ b) A missile is fired from the ground level rises x meters vertically upwards in time 3 seconds and x=100t - $\frac{25}{t}$. Find the initial velocity and maximum height of
 - c) Find the equation of the tangent and normal to the curve $y=x^2-x+1$ at (2,3).
- 25.a) Find the maximum and minimum values of $2x^3 15x^2 + 36x + 18$

b) If
$$u = x^3 - 2x^2y + 3xy^2 + y^3$$
, Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$

c) If
$$u = x^2 + y^2$$
 prove that $x = \frac{\partial u}{\partial x} + y = 2u$
 $\frac{\partial u}{\partial x} = 2v$

* * *

Mathematics - II

pol

MODEL QUESTION - PAPER - II

MATHEMATICS - II

PART - A

Max. Marks:75

I. Answer any 15 Questions:

Time: 3 Hours

15 x 1 = 15

- 1) Find the equation of the circle with centre (2,0) and radius 10 units.
- 2) Find the centre and radius of the circle $x^2 + y^2 = 4$
- 3) Find the equation of the circle with the points (1, -1) and (2, 2) joining as diameter.
- 4) Show that the point (9, 2) lies on the circle $x^2 + y^2 6x 10y 11 = 0$
- 5) Show that this circles $x^2+y^{-10x+4y-3=0}$ and $x^2+y^{-10x+4y+19=0}$ are concentric circles.
- 6) State when a function is called bijective function.
- 7) Define linear function.
- 8) Evaluate Lt $x \rightarrow 3$ $x 3^3$ x - 3
- 9) Find $\frac{dy}{dx}$ if $y = \frac{1}{x^2} + \frac{2}{x} + \frac{3}{2}$
- 10) Find $\frac{dy}{dx}$ if $y = e^x \log x$
- 11) Find $\frac{dy}{dx}$ if $y = \cos^4 x$
- 12) Find $\frac{dy}{dx}$ if $y = \tan^{-1}(x^2)$
- 13) Find $\frac{d^2y}{dx^2}$ if $y = \sin(2x)$
- 14) Find the differential equation by eliminating the constants from $y=ax^2+b$
- 15) if $s = ae^{t} + be^{-t}$, Show that acceleration is always equal is to distance
- 16) Find the slope of the normal to the curve $y = x^2 + 7x$ at (1,0)
- 17) Find the minimum value of $y = x^2 + 4x + 1$
- 18) Show that the function y=sinx is decreasing in the interval $(\pi/2,\pi)$.

MADL

19) If $u = \tan(ax+by)$ find $\underline{a} u$

20) Show that
$$\left\{\frac{x^2+y^2}{x-y}\right\}$$
s homogeneous find state the order of the function.

эx

PART - B

- 21.a) Find the equation of the circle, two of whose diameters are x + y = 6and x + 2y = 4 and whose radius is 10 Units.
 - b) Find the equation of the circle passing through (0, 1) and (4, 3) and having its centre on the line 4x 5y 5 = 0
 - c) Find the equation of the tangent at (4, 1) on the circle $x^2 + y^2 2x + 6y 15 = 0$
- 22 a) Find the equation of the circle which passes through the origin and cuts Orthogonally with circles $x^2 + y^2 - 8y + 12 = 0$ and $x^2 + y^2 - 4x - 6y - 3 = 0$
 - b) Define and draw graph of Step functions
 - c) Evaluate Lt $sin10x \\ x \rightarrow 0$ sin7x
- 23 a) Find $\frac{dy}{dx}$ if (i) $y = \frac{a}{x^2} + \frac{b}{x^3} + \frac{c}{x}$

(ii)
$$y = (x^2 - 5) \cos x \log x$$

- .b) Find $\frac{dy}{dx}$ if (i) $y = \sin(e^e \log x)$ (ii) $x^3+y^3=3axy$
- c) Find $\frac{dy}{dx}$ if (i) $y = \tan^{-1} \frac{2x}{1-x^2}$ (ii) $x = at^2$, y = 2at
- 24 a) If $y=a \cos(\log x)+b \sin(\log x)$ prove that $x^2y_2+xy_1+y=0$
 - .b) If the distance an time formula is given by s=2t3-15t2+36t+7, find the time when the velocity becomes zero.
- c) Find the equation of the tangent and normal to the curve $y = 6 + x x^2$ at (2, 4)
- 25a) Find the maximum and minimum value of $y = 4x^3 18x^2 + 24x 7$.
- b) If $u = \log (x^2+y^2)$ find $\frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ $\frac{\partial x}{\partial y} = \sin 2u$ c) If $u = \tan^{-1} x^3 + y^3$ show that $x \partial u + y \partial u = u$
- c) If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$

