STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU **SYLLABUS**

L-SCHEME

(Implements from the Academic Year 2011-2012 on wards)

All Branches of Diploma in Engineering and Technology and **Course Name:**

Special Programmes except DMOP, HMCT and Film & TV

Semester **II Semester**

Subject Title: Mathematics - III

Subject Code: 2003

No. of Weeks per Semester: 16 Weeks

Teaching and Scheme of Examination:

Subject	Instructions			Examination			
	Hours / Week	Hours / Semester	Marks		Duration		
Mathematics - III			Internal	Board	Total		
	4 Hrs.	64 Hrs.	Assessment	Examination			
			25	75	100	3 Hrs	

Topics and Allocation of Hours:

Sl.No.	Topic	Time (Hrs.)
1	Vector Algebra – I	11
2.	Vector Algebra – II	11
3.	Integration – I	11
4.	Integration – II	11
5.	Probability Distribution	11
	Tutorial	9
	Total	64

Rationale: Many of the physical problems in Engineering becomes differential

equation when mathematical modeling is done. To solve these problems, integration, the strong tool in mathematics is utilized, which intends to

give basic concepts of Integration.

Objectives: Acquires knowledge of mathematical terms, concepts, principles and

different methods. Develop the ability to solve physical problems.

Learning Structure:

Learning Structure:						
Application	Unit – I	Unit – II	Unit - III	Unit –IV	Unit - V	
		in dynamics for	To find length of		Analysis of	
	calculation of f	orce, moment	volumes surface	e area	experimental	
	velocity etc.	elocity etc.			data for	
					estimation.	
			Ţ			
Procedure	To explain	To explain	To explain	To explain	To find	
	methods	methods of	methods for	methods for	probability	
	addition,	vector and	finding integral	finding	distribution of	
	subtraction,	scalar	values of	integral	discrete	
	scalar	multiplication	different	value of	random	
	multiplication	of two, three	function.	function	variable mean	
	of vector	and four		using by	and variance	
		vectors.		parts and	using	
				bernoulli's formula.	mathematical	
				Method to	expectation.	
				find definite		
				integrals.		
			1	megrais.		
Concents	Addition and	Vector	Integral of	Integration	Probability	
Concepts	subtraction of	product of	standard	using by	mass function,	
	vector, scalar	two vectors	functions using	parts	probability	
	product of	scalar and	reverse process	method and	distribution	
	two vectors,	vector	of differentiation,	Bernoulli's	Binomial and	
	work done	product of 3	decomposition	Theorem.	Poisson	
	and	and 4 vectors.	& substitution	Definite	distributions.	
	projection.		methods.	integrals	Their mean	
		D			and variance	
			<u> </u>	- a · ·		
Facts	Definition	Definition of	Integration as	Definition	Definition of	
	of vector	vector	reverse process.	of definite	probability.	
	modulus,	product.	Decomposition	Integral Its	Probability	
	position		using	properties	axioms	
	vector,		Trigonometrical		definition of	
	direction		relations.		random	
	cosine,				variable types	
	direction				_	
	ratio.				mathematical	
	Definition				expectation	
	scalar				mean and	
	product.	1	l	1	variance.	

CONTENTS:

Chapter No.	NAME OF TOPICS	Hours	Mark s
1.	VECTOR ALGEBRA – I 1.1. Introduction: Definition of vector - types, addition, and subtraction of Vectors, Properties of addition and subtraction. Position vector. Resolution of vector in two and three dimensions. Directions cosines, direction ratios.	4	8
	SCALAR PRODUCT OF VECTORS 1.2. Definition of Scalar product of vectors – Properties – Angle between two vectors.	4	7
	APPLICATION OF SCALAR PRODUCT 1.3 Geometrical meaning of scalar product. Work done by Force.	3	7
2.	VECTOR ALGEBRA – II VECTOR PRODUCT OF TWO VECTORS 2.1 Definition of vector product of two vectors. Geometrical meaning. Properties – Angle between two vectors – unit vector perpendicular to two vectors.	4	8
	APPLICATION OF VECTOR PRODUCT OF TWO VECTORS & SCALAR TRIPLE PRODUCT 2.2. Definition of moment of a force. Definition of scalar product of three vectors – Geometrical meaning – Coplanar vector.	4	7
	PRODUCT OF MORE VECTORS 2.3. Vector Triple product. Scalar and vector product of four vectors.	3	7
3.	INTEGRATION – I Introduction 3.1. Definition of integration – Integral values using reverse process of differentiation – Integration using decomposition method.	4	8
	INTEGRATION BY SUBSTITUTION Integrals of the form $\int [f(x)]^n f^l(x) dx$ where $(n \neq -1) \frac{f^l(x)}{f(x)}$ dx , $\int F[f(x)] f^l(x) dx$	3	7
	STANDARD INTEGRALS 3.3. Integrals of the form $\int \frac{dx}{a^2 \pm x^2}$, $\int \frac{dx}{x^2 - a^2}$, $\int \frac{dx}{\sqrt{a^2 - x^2}}$, $\int \frac{Ax + B}{ax^2 + bx + c}$	4	7
4.	INTEGRATION – II INTEGRATION BY PARTS 4.1.Integrals of the form ∫x sin nx dx, ∫x cosnx dx, ∫x e ^{nx} dx, ∫x ⁿ logx dx, ∫logxdx	4	7
	BERNOULLI'S THEOREM 4.2. Evaluation of the integrals $\int x^m \cos x dx$, $\int x^m \sin x dx$, $\int x^m e^{nx} dx$, when $m \le 2$ using Bernoulli's Theorem.	3	7
	DIFINITE INTEGRALS 4.3. Definition of definite Integral. Properties of definite Integrals.	4	8

	PROBABILITY DISTRIBUTION		
	RANDOM VARIABLE	4	8
	5.1. Definition of Random variable – Types – Probability mass function –	4	0
	Mathematical expectation of discrete random variable.		
	BINOMIAL DISTRIBUTION		
	5.2. Definition		
	$P(x=x) = \begin{cases} nc_x p^x q^{n-x} & x=0,1,2,\dots n \\ 0 & \text{other wise} \end{cases}$		
	P(x=x) = 0 other wise	3	7
5.			
]	statement only). Expression for mean and variance.		
	POSSION DISTRIBUTION		
	$e^{-\lambda} \lambda^{x}, x = 0,1,2,$		
	5.3. Definition – p(x=x) = $\begin{cases} \frac{e^{-\lambda} \lambda^{x}}{x!}, & x = 0,1,2,\dots \end{cases}$ (Statement		
	0 other wise	4	7
		·	,
	Only) Expression for mean and variance		

MATHEMATICS - III MODEL QUESTION PAPER - I

<u>Time three hours</u> (Maximum Marks: 75)

 $\frac{\mathbf{PART} - \mathbf{A}}{(\text{Marks} : 15 \times 1 = 15)}$

Answer any fifteen (15) questions:

- 1. Find the sum of the vectors $4\vec{i} + 5\vec{j} + \vec{k}$, $-2\vec{i} + 4\vec{j} \vec{k}$ and $3\vec{i} 4\vec{j} + 5\vec{k}$.
- 2. If the vectors $\vec{a} = 2\vec{i} 3\vec{j}$ and $\vec{b} = -6\vec{i} + m\vec{j}$ are collinear, find the value of m.
- 3. Define scalar dot product of two vectors.
- 4. Find the projection of the vector

$$2\vec{i} + 3\vec{j} - \vec{k}on - 2\vec{i} + 4\vec{j} - \vec{k}, 3\vec{i} - 4\vec{j} + 5\vec{k}.$$

- 5. If $\vec{a} = 2\vec{i} \vec{j} + \vec{k}$ and $\vec{b} = \vec{i} + 2\vec{j} + 3\vec{k}$ find $\vec{a} \times \vec{b}$
- 6. Prove that $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} + \vec{b})$
- 7. Find the value of $[\vec{i}, \vec{j}, \vec{k}]$
- 8. Find $\vec{i} \times (\vec{j} \times \vec{k})$ and $(\vec{i} \times \vec{j}) \times \vec{k}$
- 9. **Evaluate** $\int (3x^2 5\sec^2 x + 7/x) dx$
- 10. Evaluate ∫ sin x ax
- 11. Evaluate $\int \frac{e^x}{e^x + 1} dx$
- 12. Evaluate $\int \frac{1}{\sqrt{4x^2-25}} dx$
- 13. Evaluate $\int x e^x dx$
- 14. Evaluate $\int log x dx$
- 15. Evaluate $\int_{1}^{3} 3x^{2} + 1 dx$
- 16. Evaluate $\int_{-2}^{2} x^3 dx$
- 17. Define discrete random variable.
- 18. A random variable X has the following probability distribution

X: 0 1 2 3 4 P(x): a 5a 3a 7a 4aFind the value of a

- 19. Find the mean and variance of the binomial distribution given by $P(X=x) = 10C_x (1/4)^x (3/4)^{10-x}$ when x=0,1,2.....10
- 20. Give two examples of Poisson distribution.

PART - B

 $(Marks : 5 \times 12 = 60)$

- [N.B :- (1) Answer all questions choosing any two divisions from each question.
 - (2) All questions carry equal marks.]
- 21 (a) Show that the points whose position vectors $2\vec{i} + 3\vec{j} 5\vec{k}$, $3\vec{i} + \vec{j} 2\vec{k}$ and $6\vec{i} - 5\vec{j} + 7\vec{k}$ are collinear.
 - (b) Prove that the vectors are $\vec{a} = \vec{i} + 2\vec{j} + \vec{k}$, $\vec{b} = \vec{i} + \vec{j} 3\vec{k}$ and and $\vec{c} = 7\vec{i} - 4\vec{j} + \vec{k}$ are mutually perpendicular..
 - A particle acted on by the forces $3\vec{i} 2\vec{j} + 2\vec{k}$ and $2\vec{i} + \vec{j} 3\vec{k}$ is displaced from the point $\vec{i} + 3\vec{j} - \vec{k}$ to the point $4\vec{i} - \vec{j} + 2\vec{k}$. Find the work done.
- 22 (a) Find the area of the triangle formed by the points whose position vectors are $2\vec{i} + 3\vec{j} + 4\vec{k}, 3\vec{i} + 4\vec{j} + 2\vec{k}, 4\vec{i} + 2\vec{j} + 3\vec{k}$
 - (b) Find the magnitude and direction cosines of the moment about the point (1,-2,3) of a force 2i + 3j + 6k whose line of action passes through the origin
 - (c) If $\vec{a} = \vec{i} + \vec{j}$; $\vec{b} = \vec{j} + \vec{k}$; $\vec{c} = \vec{k} + \vec{i}$; $\vec{d} = \vec{i} + \vec{j} + \vec{k}$ verify that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{d} \vec{b}] \vec{c} [\vec{a} \vec{b} \vec{c}] \vec{d}$
- (ii) Sin7x Cos5x
- 23 (a) Integrate (i) $\frac{\sin x}{1 + \cos x}$ (b) Evaluate (i) $\int \frac{6x + 5}{\sqrt{3x^2 + 5x + 6}} dx$
- (c Evaluate $\int \frac{1}{3x^2 13x 10} dx$
- 24 (a) Evaluate (i) $\int x^2 \log x \, dx$ (ii) $\int x \cos 5x$
 - (b) Using Bernoulli's formula evaluate (i) $\int x^2 e^{2x} dx$ (ii) $\int x^2 \cos 2x dx$
 - (c) Evaluate (i) $\int_{1}^{2} x^{2} 3\sqrt{x} + \frac{1}{x^{2}} dx$ (ii)) $\int_{0}^{\frac{\pi}{2}} \cos^{2} \frac{x}{2} dx$
- 25 (a) The random variable X has the following probability distribution

P(x)1/4 3/8 3/16 1/16 1/16 1/16

Find the mean and variance

- (b) A perfect cube is thrown 8 times. The occurrence of 2 or 4 is called a success, find the probability of (i) 2 success (ii) atleast 2 successes.
- (c) In a Poission distribution 3P(X=2) = P(X=4). Find the parameter λ and P(X = 2) (ii) P(X = 0)(i)

MATHEMATICS - III MODEL QUESTION PAPER - II

<u>Time three hours</u> (Maximum Marks: 75)

 $\frac{\mathbf{PART} - \mathbf{A}}{(\text{Marks}: 15 \text{ x } 1 = 15)}$

1. If $\vec{a} = 3\vec{i} - \vec{j} - 4\vec{k}, \ b = -2\vec{i} + 4\vec{j} - 3\vec{k} \ and \ c = \vec{i} + 2\vec{j} - \vec{k}, find \ | 2\vec{a} - \vec{b} + 3\vec{c} |$

- 2. Find the direction cosines of the vector $2\vec{\imath} + 3\vec{\jmath} 4\vec{k}$
- 3. If $\vec{a} = 5\vec{i} \vec{j} 6\vec{k}$, $\vec{b} = -7\vec{i} + 3\vec{j} 2\vec{k}$ find dot product of \vec{a} and \vec{b}
- 4. State the formula to find work done by the force \vec{f} in displacing the particle from the point A to B.
- 5. Define vector product of two vectors.
- 6. If \vec{a} and \vec{b} are the two adjacent sides of a parallelogram, find its area.
- 7. Define scalar product of three vectors
- 8. Express $(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d})$ in the form of determinant.
- 9. Evaluate $\int \sec^2(3+4x) dx$
- 10. Evaluate $\int sin5xcos2x dx$
- 11. Evaluate $\int \frac{e^x}{e^{x} + 5} dx$
- 12. Evaluate $\int_{0}^{\infty} \frac{1}{1+16x^2} dx$
- 13. Evaluate $\int log x dx$
- 14. Evaluate ∫ x sjnx dx
- 15. Evaluate $\int_{2}^{3} 3x^{2} + 4 dx$
- 16. Evaluate $\int_{-2}^{2} (2x^3 + 5x) dx$
- 17. Define Random variable
- 18. A Random variable X has the following the probability distribution

X 0 1 2 3 P(x) .1 .3 .5 .1 Find E(x).

- 19. In a binomial distribution, the mean and standard deviation are 12 and 2 respectively.
- 20. The Poisson constant of the Poisson distribution is 3 find P(x=1).

PART - B $(Marks : 5 \times 12 = 60)$

- [N.B :- (1) Answer all questions choosing any two divisions from each question.
 - (2) All questions carry equal marks.]

- 21 (a) Show that the points given by the vectors $4\vec{i} + 5\vec{j} + \vec{k}$, $-\vec{j} \vec{k}$, $3\vec{i} + 9\vec{j} + 4\vec{k}$ and $-4\vec{i} + 4\vec{j} + 4\vec{k}$ are coplanar.
 - (b) Find the angle between the vectors $3\vec{i} + 4\vec{j} + 12\vec{k}$ on $\vec{i} + 2\vec{j} + 2\vec{k}$.
 - (c) The work done by force $\vec{F} = a\vec{i} + \vec{j} + \vec{k}$ in moving the point of application from $\vec{i} + \vec{j} + \vec{k}$ to $2\vec{i} + 2\vec{j} + 2\vec{k}$ along a straight line is given to be 5 units. Find the value of a.
- 22 (a) Find the angle and the unit vector perpendicular to both the vectors $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{b} = \vec{i} \vec{j} \vec{k}$.
 - (b) Find the moment about the point $\vec{i} + 2\vec{j} \vec{k}$ of a force represented by $3\vec{i} + \vec{k}$ acting through the point $2\vec{i} \vec{j} 3\vec{k}$.
 - (c) Prove that $\begin{bmatrix} \vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix}^2$
- 23 (a) Evaluate (i) $\int (tanx + cotx)^2 dx$
- (ii) $\int \sqrt{1 + \sin 2x} \ dx$
- (b) Evaluate (i) $\int \tan^4 x \sec^2 x$) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$
- (c Evaluate $\int \frac{4x-3}{x^2+6x+8} dx$
- 24 (a) Evaluate (i) $\int x \log x \, dx$ (ii)

∫xcos 5x

- (b) Using Bernoulli's formula evaluate
 - (i) $\int x^2 e^{2x} dx$
- (ii) $\int x^2 \cos 2x dx$
- (c) Evaluate (i) $\int_0^1 \frac{s^{\tan^{-1}x}}{1+x^2} dx$ (ii)) $\int_0^{\frac{\pi}{2}} \frac{sinx}{sinx + cosx} dx$
- 25 (a) The random variable X has the following probability distribution

X 0 1 2 3 4 5 6 7 8 P(x) a 3a 5a 7a 9a 11a 13a 15a 17a

- (i) Find the value of a (ii) Find P(3 < x < 7) (iii) Find E(x).
- (b) Four coins are tossed simultaneously. What is the probability of getting (a) exactly 2 heads (b) at least two heads (c) at most two heads.
- (c) 3% of the screws manufactured by a factory are defective. Find probability that in a sample of 100 screws exactly 5 are defective.